References

[1] Vallis, G. K., 2019: Essentials of atmospheric and Oceanic dynamics. Cambridge University Press.

[2] Mir, S., 2024: El Nino-Southern Oscillation (ENSO) Data. Kaggle.com. https://www.kaggle.com/datasets/shabanamir/enso-data (Accessed April 24, 2025).

[3] Lindsey, R., 2009: Climate Variability: Oceanic Niño Index | NOAA Climate.gov. www.climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-nino-index.

[4] Mir, S., 2023: Forecasting El Nino-Southern Oscillation (ENSO). Kaggle.com. https://www.kaggle.com/code/shabanamir/forecasting-el-nino-southern-oscillation-enso.

[5] Smith, K. L., 2023: Climate and Geophysical Data Analysis — Climate and Geophysical Data Analysis. Github.io. https://kls2177.github.io/Climate-and-Geophysical-Data-Analysis/chapters/index.html (Accessed April 24, 2025).

[6] Kleshnina, M., C. Hilbe, Š. Šimsa, K. Chatterjee, and M. A. Nowak, 2023: The effect of environmental information on evolution of cooperation in stochastic games. Nature Communications, 14, 4153, https://doi.org/10.1038/s41467-023-39625-9.

[7] Josef Perktold, “statsmodels/statsmodels: Release 0.14.2”. Zenodo, Apr. 17, 2024. doi: 10.5281/zenodo.10984387.

[8] Greenshields, C., & Weller, H. (2022). Notes on Computational Fluid Dynamics: General Principles. Reading, UK: CFD Direct Ltd.

[9] Alistair Adcroft, Jean-Michel Campin, Ed Doddridge, Stephanie Dutkiewicz, Constantinos Evangelinos, David Ferreira, Mick Follows, Gael Forget, Baylor Fox-Kemper, Patrick Heimbach, Chris Hill, Ed Hill, Helen Hill, Oliver Jahn, Jody Klymak, Martin Losch, John Marshall, Guillaume Maze, Matt Mazloff, Dimitris Menemenlis, Andrea Molod, and Jeff Scott. 2017. MITgcm’s user manual.

[10] Wunsch, C., 2021: The Rise of Dynamical Oceanography—A Fragmentary Historical Note: The Stommel-Munk Correspondence, 1947–1953. Oceanography, 34, https://doi.org/10.5670/oceanog.2021.101.

[11] Jochum, M., and Raghu Murtugudde, 2006: Physical Oceanography: Developments Since 1950. Springer Science & Business Media.

[12] Spiridonov, V., Ćurić, M. (2021). Atmospheric Pressure and Wind. In: Fundamentals of Meteorology. Springer, Cham. https://doi.org/10.1007/978-3-030-52655-9_8

[13] Hans Petter Langtangen, and G. K. Pedersen, 2016: Scaling of Differential Equations. Cham Springer International Publishing.

[14] Pedlosky, J. (1996). Ocean Circulation Theory. Springer, Berlin, Heidelberg.

[15] Shultz, D. (2021), Tracking oxygen in the Sargasso Sea’s 18 degree water, Eos, 102, https://doi.org/10.1029/2021EO157055. Published on 15 April 2021.

[16] Underwood, E. (2019), How the ocean’s “shadow zone” breathes, Eos, 100, https://doi.org/10.1029/2019EO131849. Published on 28 August 2019.

[17] Wheeling, K. (2020), Deep-ocean oxygen may increase with climate change, Eos, 101, https://doi.org/10.1029/2020EO149201. Published on 17 September 2020.

[18] Stommel, H., 1948: The westward intensification of wind‐driven ocean currents. Eos, Transactions American Geophysical Union, 29, 202-206.

[19] Munk, W., 1950: On the wind-driven ocean circulation. Journal of Meteorology, 7, 79-93.

[20] Cushman-Roisin, B., Beckers, J.-M.: Quasi-geostrophic dynamics. Int. Geophys. 101, 521–551 (2011)

[21] Ryan Abernathey (2022) “pyqg/pyqg: v0.7.2”. Zenodo. doi: 10.5281/zenodo.6563667.

[22] Yuan Z., J. Wu, X. Cheng, and M. Jian 2008: The derivation of a numerical diagnostic model for the forcing of the geopotential. Q. J. R. Meteorol. Soc., 134, 2067-2078.

[23] Qian, Y., (2023). xinvert: A Python package for inversion problems in geophysical fluid dynamics. Journal of Open Source Software, 8(89), 5510, https://doi.org/10.21105/joss.05510

[24] Williams RG, Follows MJ. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Cambridge University Press; 2011.

[25] Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D. (2022). PyCO2SYS v1.8: marine carbonate system calculations in Python. Geoscientific Model Development 15, 15-43. doi:10.5194/gmd-15-15-2022.

[26] Humphreys, M. P., Schiller, A. J., Sandborn, D. E., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis, E. R., and Wallace, D. W. R. (2024). PyCO2SYS: marine carbonate system calculations in Python. Zenodo. doi:10.5281/zenodo.3744275.

[27] de Vries, J., Poulton, A.J., Young, J.R. et al. CASCADE: Dataset of extant coccolithophore size, carbon content and global distribution. Sci Data 11, 920 (2024). https://doi.org/10.1038/s41597-024-03724-z

[28] Showman, Adam P., Robin D. Wordsworth, Timothy M. Merlis, and Yohai Kaspi. 2013. "Atmospheric Circulation of Terrestrial Exoplanets." Pre-print.

[29] Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's Global Energy Budget. Bull. Amer. Meteor. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1.

[30] Marshall, John, and R. Alan Plumb. Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Boston, MA: Elsevier Academic Press, 2007. ISBN: 9780125586917.

[31] Held, I. M., and A. Y. Hou, 1980: Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. J. Atmos. Sci., 37, 515–533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

[32] Williams, Richard G.; Meijers, Andrew. 2019. Ocean Subduction. In: Cochran, J. Kirk; Bokuniewicz, Henry J.; Yager, Patricia L., (eds.) Encyclopedia of Ocean Sciences (Third Edition). Academic Press, 141-157.

[33] Marshall, J.C., Nurser, A.J.G., and Williams, R.G. (1993). Inferring the subduction rate and period over the North Atlantic. Journal of Physical Oceanography, 23, 1315–1329.

[34] Hoecker-Martínez, M. S., W. D. Smyth, and E. D. Skyllingstad, 2016: Oceanic Turbulent Energy Budget using Large-Eddy Simulation of a Wind Event during DYNAMO. J. Phys. Oceanogr., 46, 827–840, https://doi.org/10.1175/JPO-D-15-0057.1.

[35] Stewart, Robert. (2008). Introduction To Physical Oceanography. 10.1119/1.18716.

[36] Pedlosky, Joseph, 2003. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer-Verlag, Heidelberg and New York, 260 pp.

[37] Thompson, L., 2025: Index of /luanne/pages/ocean420. Washington University,. https://faculty.washington.edu/luanne/pages/ocean420/ (Accessed May 23, 2025).

[38] Durran, D., 1993: Is the Coriolis force really responsible for the inertial oscillation? Bull. Amer. Meteor. Soc.,74, 2179–2184.

[39] Pond, S. and Pickard, G.L. (1983) Introductory dynamical oceanography. 2nd Edition, Pergamon Press, Oxford.

[40] NASA Physical Oceanography Program. Ocean Motion. https://www.oceanmotion.org/

[41] Alan P. Trujillo and Harold V. Thurman, Essentials of Oceanography, 13th Edition, 2020, Pearson.

[42] NOAA., Making Waves: Ocean Currents. oceanservice.noaa.gov,. https://oceanservice.noaa.gov/podcast/apr14/mw123-currents.html.

[43] Wang, B. (2002) Kelvin Waves. Shankar, M., Ed., Elsevier Science Ltd., 7p. http://www.soest.hawaii.edu/

[44] Constantinou et al., (2021). GeophysicalFlows.jl: Solvers for geophysical fluid dynamics problems in periodic domains on CPUs & GPUs. Journal of Open Source Software, 6(60), 3053, doi:10.21105/joss.03053.

[45] Gent, Peter R., et al (1995). Parameterizing eddy-induced tracer transports in ocean circulation models. Journal of Physical Oceanography 25.4: 463-474.

[46] Baolong Guo, Juanjuan Zhu. Signals and Systems Volume 3 of Information and Computer Engineering, Walter de Gruyter GmbH & Co KG, 2018.

[47] D. Kleppner and R. Kolenkow, An Introduction to Mechanics, 2nd ed. Cambridge: Cambridge University Press, 2013.

[48] Hsu, Sze-Bi (2013). Ordinary Differential Equations with Applications. Word Scientific Press. ISBN-13. 978-9814452908.

[49] Jiri Kriz (2013). Earth Coordinates. Nosco AG. https://www.nosco.ch/mathematics/en/earth-coordinates.php (Accessed June 09, 2025).

[50] Vladimir Zorich (2016). Mathematical Analysis II. Universitext. Springer, Berlin, Heidelberg.

[51] Vladimir Zorich (2015). Mathematical Analysis I. Universitext. Springer, Berlin, Heidelberg.

[52] P. C. Matthews, Vector Calculus, New York:Springer-Verlag, 1998.

[53] Ekman, V.W.(1905) On the Influence of the Earth's Rotation on Ocean-Currents. Arkiv För Matematic, Astronomi och Fysik, Bd 2, N:o 11, 1-53.

[54] Davis, R. E., 1976: Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

[55] Holthuijsen LH. Waves in coastal waters. In: Waves in Oceanic and Coastal Waters. Cambridge University Press; 2007:244-285.

[56] Ball, C. G., H. Fellouah, and A. Pollard, 2012: The flow field in turbulent round free jets. Progress in Aerospace Sciences, 50, 1–26, https://doi.org/10.1016/j.paerosci.2011.10.002.

[57] Philander GS. Equatorial currents. McGraw Hill’s AccessScience; 2019. https://doi.org/10.1036/1097-8542.168760

[58] Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Bastos, A., et al. (2022). How well do we understand the land-ocean-atmosphere carbon cycle? Reviews of Geophysics, 60, e2021RG000736. https://doi.org/10.1029/2021RG000736

[59] Millero, F.J. (1996) Chemical Oceanography. 2nd Edition, CRC Press, New York.

[60] Hinrichs, C., P. Köhler, Christoph Völker, and J. Hauck, 2023: Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement. Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023.

[61] Millero, F. J., K. Lee, and M. Roche, 1998: Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 60, 111–130, https://doi.org/10.1016/S0304-4203(97)00084-4.

[62] Feng, Ellias. (2017). Modeling assessments of climate engineering.

[63] Hammill E, Johnson E, Atwood TB, et al. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator. Glob Change Biol. 2018; 24: e128–e138. https://doi.org/10.1111/gcb.13849.

[64] Hornung HG, Killen P. A stationary oblique breaking wave for laboratory testing of surfboards. Journal of Fluid Mechanics. 1976;78(3):459-480. doi:10.1017/S0022112076002553

[65] Tyrrell, T. (2001). Redfield Ratio. Encyclopedia of Ocean Sciences. 4. 2377-2387. 10.1006/rwos.2001.0271.

[66] Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean Limb of the Global Deep Overturning Circulation. J. Phys. Oceanogr., 31, 143–173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

[67] Lee, H. J., 2023: CS231N - 1. Velog.io,. https://velog.io/@ili0820/CS231N-1 (Accessed June 12, 2025).

[68] Wang H. Viscous Shear Flow. In: A Guide to Fluid Mechanics. Cambridge University Press; 2023:128-190.

[69] Luo, Y.; Chen, Y.; Zhang, Z. CFDBench: A Comprehensive Benchmark for Machine Learning Methods in Fluid Dynamics. Preprints 2023, 2023091550. https://doi.org/10.20944/preprints202309.1550.v1

[70] Balduzzi, David, Falsifiable implies Learnable.

[71] Gill, A. (1982) Atmosphere-Ocean Dynamics. Academic Press, New York, 662.

[72] Huybers, P., Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 441, 329–332 (2006). https://doi.org/10.1038/nature04745

[73] Lu, Jie & Liu, Anjin & Dong, Fan & Gu, Feng & Gama, João & Zhang, Guangquan. (2018). Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and Data Engineering. PP. 1-1. 10.1109/TKDE.2018.2876857.

[74] Alan Oppenheim and Ronald Schafer. Discrete-Time Signal Processing. Prentice Hall, 3rd edition, 2010.