Steady Flow between Parallel Plates
FlowBetweenParallelPlates
Fully developed flow \(\rightarrow \mathbf{u} = (u, v), \quad u = u(y)\) $$ \frac{\partial u}{\partial x} = 0 \quad \xrightarrow{\text{continuity equation}} \boldsymbol{\nabla}\!\cdot\!\mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \;\;\Rightarrow\;\; \frac{\partial v}{\partial y} = 0 \;\;\xrightarrow[v=0]{@\,y=0}\;\;\; v=0 $$
x-momentum: $ 0 = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2} \;\;\;\longrightarrow\;\;\; \frac{\partial p}{\partial x} = \text{const.} = \frac{dp}{dx} $
y-momentum: $ 0 = -\frac{1}{\rho}\frac{\partial p}{\partial y} \;\;\;\longrightarrow\;\;\; \frac{\partial p}{\partial y} = 0 \;\;\;\longrightarrow\;\;\; p = p(x) $
$$ \frac{dP}{dx}=\text{const} \;\;\xrightarrow{\text{x-mom}}\;\; 0=-\frac{y^{2}}{2}\frac{dP}{dx} +\underbrace{\rho\,\nu}_{\mu}\,u +A y + B $$ A, B are determined from boundary conditions @ y = 0: u = 0 @ y = h: u = U $$ \Longrightarrow\;\; u(y) = \frac{U}{h} y - \frac{1}{2\mu} \frac{dp}{dx}\, y \,(h-y) $$