Tracer Equations
For a scalar tracer
$$
\frac{\partial C}{\partial t} = C_t = - \mathbf{u} \cdot \nabla C \; (\text{advection}) + k \nabla^2 C \; (\text{diffusion}) + S \; (\text{source})
$$
$$
T = \overline{T} + T',
\quad
\overline{T} = \frac{1}{\Delta t} \int_0^{\Delta t} T \, dt,
\quad
\overline{T'} = 0
$$
For a 1D tracer with source $H$
$$
T_t = - u T_x + k T_{xx} + H
$$
Insert $T = \overline{T} + T'$, $u = \overline{u} + u'$, $H = \overline{H} + H'$
$$
(\overline{T} + T')_t
= - (\overline{u} + u') (\overline{T} + T')_x
+ k (\overline{T} + T')_{xx}
+ (\overline{H} + H')
$$
Taking the Reynolds average yields
$$
\overline{T}_t
= - \big( \overline{u} \, \overline{T}_x + \overline{u'T'_x} \big)
+ k \, \overline{T}_{xx} + \overline{H}.
$$
Here the new correlation term $\overline{u'T'_x}$ arises.
The unresolved correlation $\overline{u'T'_x}$ represents the effect of turbulent fluctuations.
This is the closure problem: the mean equation now contains an unknown term
◀
▶