Prandtl 1926: the Austauschansatz
Prandtl proposed an ansatz (Austauschansatz)
$$
T' \approx - l' \, \overline{T}_x \Rightarrow u'T'_x \;\approx\; u' l' \overline{T}_{xx}
$$
By introducing the turbulent diffusivity \(k_t\), which depends on size and strength of the waves or
$$
k_t \;\equiv\; u' l'
$$
Approximate
$$
\overline{u'T'_x} \;\approx\; k_t \, \overline{T}_{xx}
$$
$$
\overline{T}_t = - \overline{u} \, \overline{T}_x + (k + k_t)\, \overline{T}_{xx} + \overline{H}
$$
Or in vector form
$$
\overline{T}_t = - \overline{\mathbf{u}} \cdot \nabla \overline{T} + k_{\text{turb}} \nabla^2 \overline{T} + \overline{H}
$$
- For waves of $1 \, \text{m}$ amplitude and $1 \, \text{mm/s}$ speed of water,
$$
k_t \approx 10^{-3} \, \text{m}^2 \, \text{s}^{-1}
$$
- For comparison, the molecular diffusion
$$
k_{\text{Molecular}} = 10^{-7} \, \text{m}^2 \, \text{s}^{-1}
$$
◀
▶