Tracer Equations
$$
f
=\underbrace{\overline{f}}_{\text{average part}}
+\underbrace{f'}_{\text{fluctuation}}
$$
The Navier–Stokes equation for incompressible flow can be written as
$$
\underbrace{\frac{\partial \vec{u}}{\partial t}}_{\text{Local acceleration}}
+ \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{\text{Advection}}
= - \underbrace{\frac{1}{\rho} \nabla P}_{\text{Pressure force}}
+ \underbrace{g\vec{k}}_{\text{Gravity}}
+ \underbrace{\nu \nabla^2 \vec{u}}_{\text{Viscous diffusion}}
$$
$g\vec{k}$ with typically
$
\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$
defines gravity as a vector field acting downward (if you use $-g\vec{k}$, then $\vec{k}$ points upward)
For any field variable (velocity $\vec{u}$, pressure $P$, or scalar tracer $T$), we decompose it into a mean and a fluctuating part
$$
\vec{u} = \overline{\vec{u}} + \vec{u}' \quad \text{and} \quad P = \overline{P} + P' \quad \text{and} \quad T = \overline{T} + T'
$$
Apply the time-average operator to the NS equation. The nonlinear advection term becomes
$$
(\vec{u} \cdot \nabla)\vec{u} = (\overline{\vec{u}} \cdot \nabla)\overline{\vec{u}} + \nabla \cdot \overline{\vec{u}'\vec{u}'}
$$
$$
\overline{u_i' u_j'} \;\;\Rightarrow\;\; \text{new unknowns!}
$$
This introduces a Reynolds stress tensor
So the Reynolds-averaged Navier-Stokes (RANS) equation becomes
$$
\frac{\partial \overline{\vec{u}}}{\partial t}
+ (\overline{\vec{u}} \cdot \nabla)\overline{\vec{u}}
= - \frac{1}{\rho} \nabla \overline{P} + g\vec{k} + \nu \nabla^2 \overline{\vec{u}} - \nabla \cdot \overline{\vec{u}' \vec{u}'}
$$
The term $- \nabla \cdot \overline{\vec{u}'\vec{u}'}$ is the turbulent momentum transport, and it leads directly to the turbulence closure problem
◀
▶