Reynolds Stress Transport Equations
For convenience in later applications, the transport equation of turbulent fluctuating velocity \(\boxed{\frac{\partial u_i}{\partial t}
+ U_j \frac{\partial u_i}{\partial x_j}
+ u_j \frac{\partial U_i}{\partial x_j}
+ \frac{\partial}{\partial x_j}\big( u_i u_j - \overline{u_i u_j} \big)
= -\frac{1}{\rho} \frac{\partial p}{\partial x_i}
+ \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}s}\) is denoted as
$$
L(u_i) = 0
$$
Multiplying the transport equation for $u_i$ by $u_j$, and the transport equation for $u_j$ by $u_i$, then adding the two together and taking the average
$$
\langle u_j L(u_i) + u_i L(u_j) \rangle = 0
$$
\(
\frac{D \, \overline{u_i u_j}}{Dt}
= \frac{\partial}{\partial x_k} \left(
\nu \frac{\partial \overline{u_i u_j}}{\partial x_k}
- \overline{u_i u_j u_k}
- \frac{1}{\rho} \overline{u_i p} \, \delta_{jk}
+ \frac{1}{\rho} \overline{u_j p} \, \delta_{ik}
\right)
- \left(
\overline{u_k u_i} \frac{\partial U_j}{\partial x_k}
+ \overline{u_k u_j} \frac{\partial U_i}{\partial x_k}
\right)
+ \frac{2}{\rho} \, \overline{p s_{ij}}
- 2\nu \, \overline{\frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}}
\)
In the equation, $s_{ij}$ is the fluctuating strain-rate tensor
$
s_{ij} = \tfrac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right);
$
$\delta_{ik}$ and $\delta_{jk}$ are the Kronecker delta in tensor notation
For convenience, this equation is generally written as
$$
c_{ij} = d_{ij} + P_{ij} + \phi_{ij} - \varepsilon_{ij}
$$
This equation describes all the mechanisms governing the transport of Reynolds stresses
◀
▶