Equations of Turbulent Fluctuations
The transport equation of turbulent fluctuating velocity can be obtained by the instantaneous momentum equation \(\boxed{\frac{\partial \tilde{u}_i}{\partial t}
+ \frac{\partial (\tilde{u}_i \tilde{u}_j)}{\partial x_j}
=
-\,\frac{1}{\rho}\,
\frac{\partial \tilde{p}}{\partial x_i}
+ g_i
+ \nu \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j}
\quad (i,j=1,2,3)}\)
minus the average momentum equation (RANS) \(\boxed{\frac{\partial U_i}{\partial t}
+U_j\frac{\partial U_i}{\partial x_j}
=-\,\frac{1}{\rho}\frac{\partial P}{\partial x_i}
+g_i
+\nu\,\frac{\partial^2 U_i}{\partial x_j\partial x_j}
-\frac{\partial \overline{u_i u_j}}{\partial x_j}}\)
\[
\frac{\partial u_i}{\partial t}
+ U_j \frac{\partial u_i}{\partial x_j}
+ u_j \frac{\partial U_i}{\partial x_j}
+ \frac{\partial}{\partial x_j}\big( u_i u_j - \overline{u_i u_j} \big)
= -\frac{1}{\rho} \frac{\partial p}{\partial x_i}
+ \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}
\]
For incompressible turbulent flow, the fluctuating velocity field also satisfies the continuity condition of zero divergence.
From equation \(\boxed{\frac{\partial \tilde{u}_j}{\partial x_j} = 0
}\) minus equation \(\boxed{\frac{\partial U_j}{\partial x_j}=0
}\)
\[\frac{\partial u_j}{\partial x_j} = 0
\]
Similarly, from equation \(\boxed{\frac{\partial \tilde{\omega}_i}{\partial t}
+ \frac{\partial}{\partial x_j} \big( \tilde{u}_j \tilde{\omega}_i \big)
= \tilde{\omega}_j \tilde{s}_{ij}
+ \nu \frac{\partial^2 \tilde{\omega}_i}{\partial x_j \partial x_j},
\quad (i, j = 1, 2, 3)}\) minus equation \(\boxed{\frac{\partial \Omega_i}{\partial t}
+ U_j \frac{\partial \Omega_i}{\partial x_j}
= \Omega_j S_{ij}
+ \nu \frac{\partial^2 \Omega_i}{\partial x_j \partial x_j}
- \frac{\partial}{\partial x_j}\,(\overline{u_j \omega_i})
+ \omega_j s_{ij}}\), the transport equation for the vorticity fluctuations can be obtained
$$
\frac{\partial \omega_i}{\partial t}
+ U_j \frac{\partial \omega_i}{\partial x_j}
+ u_j \frac{\partial \Omega_i}{\partial x_j}
+ \frac{\partial}{\partial x_j}\left( u_j \omega_i - \overline{u_j \omega_i} \right)
= \Omega_j s_{ij}
+ \omega_j S_{ij}
+ \big( \omega_j s_{ij} - \overline{\omega_j s_{ij}} \big)
+ \nu \frac{\partial^2 \omega_i}{\partial x_j \partial x_j}
$$
Taking the divergence of both sides of equation \(\boxed{\frac{\partial u_i}{\partial t}
+ U_j \frac{\partial u_i}{\partial x_j}
+ u_j \frac{\partial U_i}{\partial x_j}
+ \frac{\partial}{\partial x_j}\big( u_i u_j - \overline{u_i u_j} \big)
= -\frac{1}{\rho} \frac{\partial p}{\partial x_i}
+ \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}}\), the Poisson equation for the pressure fluctuations is obtained
\[\frac{1}{\rho} \nabla^2 p
= - \frac{\partial^2}{\partial x_i \partial x_j} \big( u_i U_j + U_i u_j \big)
- \frac{\partial^2}{\partial x_i \partial x_j} \big( u_i u_j - \overline{u_i u_j} \big)
\]
The turbulent state at any point in space is instantaneously determined
by the flow conditions over the entire flow field and its boundaries.
This property of turbulence is called nonlocality.
Nonlocality is another factor that makes turbulence problems extremely complex.
◀
▶