Reynolds-Averaged Vorticity Transport Equation
$$
\tilde{\omega}_i =
\underbrace{\Omega_i}_{\substack{\Omega_i = \varepsilon_{ijk} \tfrac{\partial U_k}{\partial x_j} \\ \text{average vorticity}}}
+
\underbrace{\omega_i}_{\substack{\omega_i = \varepsilon_{ijk} \tfrac{\partial u_k}{\partial x_j} \\ \text{fluctuating vorticity}}},
\quad
\tilde{u}_i = U_i + u_i
$$
Substituting equation \(\boxed{\tilde{\omega}_i = \Omega_i + \omega_i,
\quad
\tilde{u}_i = U_i + u_i}\) into equation \(\boxed{\frac{\partial \tilde{\omega}_i}{\partial t}
+ \frac{\partial}{\partial x_j} \big( \tilde{u}_j \tilde{\omega}_i \big)
= \tilde{\omega}_j \tilde{s}_{ij}
+ \nu \frac{\partial^2 \tilde{\omega}_i}{\partial x_j \partial x_j}
\quad (i, j = 1, 2, 3)}\) and then taking the ensemble average of both sides, the Reynolds-averaged vorticity transport equation is obtained
$$
\frac{\partial \Omega_i}{\partial t}
+ U_j \frac{\partial \Omega_i}{\partial x_j}
= \Omega_j S_{ij}
+ \nu \frac{\partial^2 \Omega_i}{\partial x_j \partial x_j}
- \frac{\partial}{\partial x_j} \big( \overline{u_j \omega_i}) + \overline{\omega_j s_{ij}}
$$
\[
\frac{\partial \Omega_i}{\partial t}
+ U_j \frac{\partial \Omega_i}{\partial x_j}
= \underbrace{\Omega_j
\overbrace{S_{ij}}^{\substack{
\tfrac{1}{2}\left(\tfrac{\partial U_i}{\partial x_j}
+ \tfrac{\partial U_j}{\partial x_i}\right) \\
\text{average} \\
\text{strain-rate tensor}}}}_{\substack{
\text{average vorticity} \\
\text{amplification} \\
\text{due to average strain-rate}}}
+ \underbrace{\nu \frac{\partial^2 \Omega_i}{\partial x_j \partial x_j}}_{\substack{
\text{average vorticity} \\
\text{diffusion} \\
\text{due to molecular motion}}}
- \underbrace{\frac{\partial}{\partial x_j}\,(\overline{u_j \omega_i})}_{\substack{
\text{average vorticity transport} \\
\text{(or turbulent diffusion)} \\
\text{caused by} \\
\text{fluctuating velocity}}}
+ \underbrace{\omega_j
\overbrace{s_{ij}}^{\substack{
\tfrac{1}{2}\left(\tfrac{\partial u_i}{\partial x_j}
+ \tfrac{\partial u_j}{\partial x_i}\right) \\
\text{fluctuating} \\
\text{strain-rate tensor}}}}_{\substack{
\text{average vorticity generated by} \\
\text{vortex stretching and tilting} \\
\text{due to fluctuating strain-rate}}}
\]
◀
▶