Reynolds Stress Transport Equations
\[ \underbrace{c_{ij}}_{\substack{\text{convection term}}} = \underbrace{d_{ij}}_{\substack{\text{diffusion term}}} + \underbrace{P_{ij}}_{\substack{\text{production term}}} + \underbrace{\phi_{ij}}_{\substack{\text{redistribution term}}} - \underbrace{\varepsilon_{ij}}_{\substack{\text{dissipation term}}} \]

The Reynolds stress transport equation \( \frac{D \, \overline{u_i u_j}}{Dt} = \frac{\partial}{\partial x_k} \left( \nu \frac{\partial \overline{u_i u_j}}{\partial x_k} - \overline{u_i u_j u_k} - \frac{1}{\rho} \overline{u_i p} \, \delta_{jk} + \frac{1}{\rho} \overline{u_j p} \, \delta_{ik} \right) - \left( \overline{u_k u_i} \frac{\partial U_j}{\partial x_k} + \overline{u_k u_j} \frac{\partial U_i}{\partial x_k} \right) + \frac{2}{\rho} \, \overline{p s_{ij}} - 2\nu \, \overline{\frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k}} \) that derived from the N–S equations contains all the information of turbulent motion under the sense of statistical averaging. Conceptually, this equation is composed of the following physical mechanisms:


1Song Fu & Liang Wang (2023). Theory of Turbulence Modelling. ISBN 978-7-03-074639-9.