\(\ \delta \sim (\nu t)^{1/2},\quad t\sim \frac{L}{U_\infty}\ \Rightarrow\ \delta \sim \sqrt{\frac{\nu L}{U_\infty}} \ \)
\(\ \frac{\delta}{L} \sim \frac{1}{L}\sqrt{\frac{\nu L}{U_\infty}}
= \frac{\sqrt{\nu}}{\sqrt{U_\infty}}\cdot\frac{\sqrt{L}}{L}
= \frac{\sqrt{\nu}}{\sqrt{U_\infty}}\cdot
\frac{\cancel{\sqrt{L}}}{\cancel{\sqrt{L}}\ \sqrt{L}} \ \)
\(\ \frac{\delta}{L} \sim \frac{\sqrt{\nu}}{\sqrt{U_\infty}}\cdot\frac{1}{\sqrt{L}}
= \sqrt{\frac{\nu}{U_\infty L}}
= \left(\frac{U_\infty L}{\nu}\right)^{-1/2}
= \mathrm{Re}_L^{-1/2} \ \)
A formal simplification of the equations of motion within the boundary layer can now be performed. The basic idea is that variations across the boundary layer occur over a much shorter length scale than variations along the layer $$ \frac{\partial}{\partial x}\sim \frac{1}{L},\qquad \frac{\partial}{\partial y}\sim \frac{1}{\bar\delta} $$ where \(\boxed{\mathrm{Re}\gg 1} \ \Rightarrow\ \frac{\bar\delta}{L}\sim \mathrm{Re}^{-1/2}\ll 1 \ \Rightarrow\ \boxed{\bar\delta \ll L}\)
◀ ▶