Boundary Layer Theory
The proper dimensionless variables for boundary-layer flow are $x^*=x/L,\quad y^*=y/\bar\delta=(y/L)\mathrm{Re}^{1/2},\quad u^*=u/U_\infty,\quad v^*=(v/U_\infty)\mathrm{Re}^{1/2}, \quad p^*=(p-p_\infty)/(\rho U_\infty^2)$

\(\because \bar\delta \ll L \text{ when } \mathrm{Re}\gg 1\)
\(\therefore \bar\delta \sim \sqrt{\frac{\nu L}{U_\infty}} \;\Rightarrow\; \frac{\bar\delta}{L}\sim \sqrt{\frac{\nu}{U_\infty L}} =\left(\frac{U_\infty L}{\nu}\right)^{-1/2} =\mathrm{Re}^{-1/2}\ll1 \;\Rightarrow\; \bar\delta\ll L\)
\(\because \text{Continuity equation } \boxed{\partial u/\partial x+\partial v/\partial y=0} \text{ gives the scale for $v$}\)
\(\therefore \frac{\partial}{\partial x}\sim\frac{1}{L},\ \frac{\partial}{\partial y}\sim\frac{1}{\bar\delta},\ u\sim U_\infty \Rightarrow\quad \frac{U_\infty}{L}\sim \frac{v}{\bar\delta} \;\Rightarrow\; v \sim \frac{\bar\delta}{L}U_\infty = U_\infty\,\mathrm{Re}^{-1/2} \)
\(\because \text{Pressure scale at high } \mathrm{Re} \text{ (outer flow nearly irrotational)} \Rightarrow \text{the pressure variations scale with the fluid inertia} \)
\(\therefore \rho(\mathbf{u}\cdot\nabla)\mathbf{u}\sim\nabla p \;\Rightarrow\; \frac{\rho U_\infty^2}{L}\sim \frac{p-p_\infty}{L} \;\Rightarrow\; p-p_\infty \sim \rho U_\infty^2 \)
\(\therefore \text{Choose nondimensional variables } x^*=\frac{x}{L},\quad y^*=\frac{y}{\bar\delta},\quad u^*=\frac{u}{U_\infty},\quad v^*=\frac{v}{U_\infty}\mathrm{Re}^{1/2},\quad p^*=\frac{p-p_\infty}{\rho U_\infty^2} \)
Confirming these scalings make the continuity equation order-one \(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} =\frac{U_\infty}{L}\!\left(\frac{\partial u^*}{\partial x^*}+\frac{\partial v^*}{\partial y^*}\right)=0 \;\Rightarrow\; \frac{\partial u^*}{\partial x^*}+\frac{\partial v^*}{\partial y^*}=0\)

In terms of these dimensionless variables, the steady two-dimensional equations of motion are $$ \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0 $$ $$ u^{*}\frac{\partial u^{*}}{\partial x^{*}}+v^{*}\frac{\partial u^{*}}{\partial y^{*}} =-\frac{\partial p^{*}}{\partial x^{*}}+\frac{1}{\mathrm{Re}}\frac{\partial^{2}u^{*}}{\partial x^{*2}}+\frac{\partial^{2}u^{*}}{\partial y^{*2}} $$ $$ \frac{1}{\mathrm{Re}}\!\left(u^{*}\frac{\partial v^{*}}{\partial x^{*}}+v^{*}\frac{\partial v^{*}}{\partial y^{*}}\right) =-\frac{\partial p^{*}}{\partial y^{*}}+\frac{1}{\mathrm{Re}^{2}}\frac{\partial^{2}v^{*}}{\partial x^{*2}}+\frac{1}{\mathrm{Re}}\frac{\partial^{2}v^{*}}{\partial y^{*2}} $$ where $\mathrm{Re}\equiv U_{\infty}L/\nu$ is an overall Reynolds number

$x$-momentum: \(u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y} =-\frac{1}{\rho}\frac{\partial p}{\partial x} +\nu\!\left(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}\right) \Rightarrow \frac{U_\infty^2}{L} \!\left( u^*\frac{\partial u^*}{\partial x^*} +v^*\frac{\partial u^*}{\partial y^*}\right) =\frac{U_\infty^2}{L} \!\left( -\frac{\partial p^*}{\partial x^*} +\frac{1}{\mathrm{Re}}\frac{\partial^2 u^*}{\partial x^{*2}} +\frac{\partial^2 u^*}{\partial y^{*2}}\right)\)
\(\Rightarrow u^*\frac{\partial u^*}{\partial x^*} +v^*\frac{\partial u^*}{\partial y^*} =-\frac{\partial p^*}{\partial x^*} +\frac{1}{\mathrm{Re}}\frac{\partial^2 u^*}{\partial x^{*2}} +\frac{\partial^2 u^*}{\partial y^{*2}}\)
$y$-momentum: \(u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y} =-\frac{1}{\rho}\frac{\partial p}{\partial y} +\nu\!\left(\frac{\partial^2 v}{\partial x^2} +\frac{\partial^2 v}{\partial y^2}\right) \Rightarrow \frac{U_\infty^2}{L\,\mathrm{Re}^{1/2}} \!\left( u^*\frac{\partial v^*}{\partial x^*} +v^*\frac{\partial v^*}{\partial y^*}\right) =\frac{U_\infty^2}{L} \!\left( -\mathrm{Re}^{1/2}\frac{\partial p^*}{\partial y^*} +\frac{1}{\mathrm{Re}^{3/2}}\frac{\partial^2 v^*}{\partial x^{*2}} +\frac{1}{\mathrm{Re}^{1/2}}\frac{\partial^2 v^*}{\partial y^{*2}}\right)\)
\(\Rightarrow \frac{1}{\mathrm{Re}}\!\left( u^*\frac{\partial v^*}{\partial x^*} +v^*\frac{\partial v^*}{\partial y^*}\right) =-\frac{\partial p^*}{\partial y^*} +\frac{1}{\mathrm{Re}^2}\frac{\partial^2 v^*}{\partial x^{*2}} +\frac{1}{\mathrm{Re}}\frac{\partial^2 v^*}{\partial y^{*2}}\)