Advective term \(u\,\dfrac{du}{dx}\) | Viscous term \(\nu\,\dfrac{d^2u}{dy^2}\) | Balance |
Order: \(u=\mathcal O(U_\infty),\ \dfrac{du}{dx}=\mathcal O(U_\infty/L)\) \(\Rightarrow u\,\dfrac{du}{dx}=\mathcal O\!\left(\tfrac{U_\infty^2}{L}\right)\) |
Order: \(\dfrac{d^2u}{dy^2}=\mathcal O(U_\infty/\delta^2)\) \(\Rightarrow \nu\,\dfrac{d^2u}{dy^2}=\mathcal O\!\left(\tfrac{\nu U_\infty}{\delta^2}\right)\) |
\(\mathcal O\!\left(\tfrac{U_\infty^2}{L}\right)\sim \mathcal O\!\left(\tfrac{\nu U_\infty}{\delta^2}\right)\) |
Discretize: \(\displaystyle u\,\dfrac{du}{dx} \approx \underbrace{u(x,y)}_{\mathcal O(U_\infty)} \ \underbrace{\tfrac{u(x+\Delta x,y)-u(x,y)}{\Delta x}}_{\mathcal O(U_\infty/L)},\ \Delta x\sim L\) \(\underbrace{U_\infty}_{u(x,y)}\, \frac{U_\infty}{L}\, \Big(\tfrac{\cancel{\Delta x}}{\cancel{\Delta x}}\Big) = \frac{U_\infty^2}{L}\) |
Discretize: \(\displaystyle \nu\,\dfrac{d^2u}{dy^2} \approx \nu\,\underbrace{\tfrac{u(x,y+\Delta y)-2u(x,y)+u(x,y-\Delta y)}{(\Delta y)^2}}_{\mathcal O(U_\infty/\delta^2)},\ \Delta y\sim \delta\) \(\nu\,\frac{U_\infty}{\delta^2}\, \Big(\tfrac{\cancel{(\Delta y)^2}}{\cancel{(\Delta y)^2}}\Big) = \frac{\nu\,U_\infty}{\delta^2}\) |
\(\tfrac{U_\infty\cdot U_\infty}{L}\ \sim\ \tfrac{\nu\cdot U_\infty}{\delta^2}\) |
\(\tfrac{U_\infty\cdot U_\infty}{L}\) | \(\tfrac{\nu\cdot U_\infty}{\delta^2}\) |
\(\tfrac{\cancel{U_\infty}\,U_\infty}{L}\sim \tfrac{\nu\,\cancel{U_\infty}}{\delta^2} \) \(\Rightarrow\ \tfrac{U_\infty}{L}\sim \tfrac{\nu}{\delta^2}\) \(\Rightarrow\delta^2\sim \tfrac{\nu L}{U_\infty}\) \(\Rightarrow\ \boxed{\delta\sim \sqrt{\tfrac{\nu L}{U_\infty}}}\) \( \tfrac{\delta}{L}\sim \mathrm{Re}_L^{-1/2}\) |