Boundary Layer Theory
Boundary–layer thickness relation $$ \boxed{\;\delta \sim \sqrt{\frac{\nu\,L}{U_\infty}}\qquad\Longleftrightarrow\qquad \frac{\delta}{L}\sim \frac{1}{\sqrt{\mathrm{Re}_L}},\ \ \mathrm{Re}_L=\dfrac{U_\infty L}{\nu}\;} $$ for a steady, incompressible, laminar boundary layer with external speed $U_\infty$ over a body of length scale $L$
Advective term \(u\,\dfrac{du}{dx}\) Viscous term \(\nu\,\dfrac{d^2u}{dy^2}\) Balance
Order: \(u=\mathcal O(U_\infty),\ \dfrac{du}{dx}=\mathcal O(U_\infty/L)\)
\(\Rightarrow u\,\dfrac{du}{dx}=\mathcal O\!\left(\tfrac{U_\infty^2}{L}\right)\)
Order: \(\dfrac{d^2u}{dy^2}=\mathcal O(U_\infty/\delta^2)\)
\(\Rightarrow \nu\,\dfrac{d^2u}{dy^2}=\mathcal O\!\left(\tfrac{\nu U_\infty}{\delta^2}\right)\)
\(\mathcal O\!\left(\tfrac{U_\infty^2}{L}\right)\sim \mathcal O\!\left(\tfrac{\nu U_\infty}{\delta^2}\right)\)
Discretize:
\(\displaystyle u\,\dfrac{du}{dx} \approx \underbrace{u(x,y)}_{\mathcal O(U_\infty)} \ \underbrace{\tfrac{u(x+\Delta x,y)-u(x,y)}{\Delta x}}_{\mathcal O(U_\infty/L)},\ \Delta x\sim L\)
\(\underbrace{U_\infty}_{u(x,y)}\, \frac{U_\infty}{L}\, \Big(\tfrac{\cancel{\Delta x}}{\cancel{\Delta x}}\Big) = \frac{U_\infty^2}{L}\)
Discretize:
\(\displaystyle \nu\,\dfrac{d^2u}{dy^2} \approx \nu\,\underbrace{\tfrac{u(x,y+\Delta y)-2u(x,y)+u(x,y-\Delta y)}{(\Delta y)^2}}_{\mathcal O(U_\infty/\delta^2)},\ \Delta y\sim \delta\)
\(\nu\,\frac{U_\infty}{\delta^2}\, \Big(\tfrac{\cancel{(\Delta y)^2}}{\cancel{(\Delta y)^2}}\Big) = \frac{\nu\,U_\infty}{\delta^2}\)
\(\tfrac{U_\infty\cdot U_\infty}{L}\ \sim\ \tfrac{\nu\cdot U_\infty}{\delta^2}\)
\(\tfrac{U_\infty\cdot U_\infty}{L}\) \(\tfrac{\nu\cdot U_\infty}{\delta^2}\) \(\tfrac{\cancel{U_\infty}\,U_\infty}{L}\sim \tfrac{\nu\,\cancel{U_\infty}}{\delta^2} \)
\(\Rightarrow\ \tfrac{U_\infty}{L}\sim \tfrac{\nu}{\delta^2}\)
\(\Rightarrow\delta^2\sim \tfrac{\nu L}{U_\infty}\)
\(\Rightarrow\ \boxed{\delta\sim \sqrt{\tfrac{\nu L}{U_\infty}}}\)
\( \tfrac{\delta}{L}\sim \mathrm{Re}_L^{-1/2}\)