Dispersion Relation for Rossby Waves
$$ \omega = -\frac{ \overbrace{\beta k}^{\substack{\text{$\beta$-effect} \\ \text{(zonal wavenumber $k$)}}} }{ \underbrace{k^{2} + l^{2} + \frac{f_{0}^{2}}{c^{2}}}_{\substack{\text{total wavenumber $K^2$ plus} \\ \text{deformation term $f_0^2/c^2$}}} } $$ This is the dispersion relation for Rossby waves
$$ \begin{aligned} &\underbrace{\text{Only $k$ in numerator; $l$ only in $K^{2}$}}_{\text{$\beta$-effect anisotropy}} \Longrightarrow \text{not horizontally isotropic; sign of $k$ sets phase direction (for $\beta>0$)} \\ &\text{For stratified flows, replace $c$ by:}\quad \begin{cases} c^{2} = g'H &\text{(reduced-gravity 1½-layer)}\\ c = \dfrac{NH}{n\pi} &\text{($n$th mode of continuously stratified model)} \end{cases} \\[8pt] &\text{Barotropic mode: } c \ \text{very large} \ \Rightarrow \ f_{0}^{2}/c^{2} \approx 0 \quad\Longrightarrow\quad \omega \approx -\frac{\beta k}{k^{2} + l^{2}} \end{aligned} $$