Dispersion Relation for Rossby Waves
Assume the solutions of the quasi-geostrophic form of the linearized vorticity equation \(\boxed{\left( \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} - \frac{f_0^2}{c^2} \eta \right) + \beta \ \frac{\partial \eta}{\partial x} = 0}\) will be in the form $$ \eta = \hat{\eta} \exp\{ i(kx + ly - \omega t) \} $$ and regard $\omega$ as positive; the signs of $k$ and $l$ then determine the direction of phase propagation
Substituting this assumed solution form into \(\boxed{\left( \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} - \frac{f_0^2}{c^2} \eta \right) + \beta \ \frac{\partial \eta}{\partial x} = 0}\) gives $$ \omega = -\frac{\beta k}{k^2 + l^2 + f_0^2/c^2} $$ This is the dispersion relation for Rossby waves
\[ \begin{aligned} \eta=\hat{\eta}\,e^{i(kx+ly-\omega t)} &\mathrel{\underset{\text{compute derivatives}}{\Rightarrow}}\; \frac{\partial\eta}{\partial t}=-i\omega\eta,\quad \frac{\partial\eta}{\partial x}=ik\eta,\quad \frac{\partial^2\eta}{\partial x^2}=-k^2\eta,\quad \frac{\partial^2\eta}{\partial y^2}=-l^2\eta \\ &\mathrel{\underset{\text{substitute}}{\Rightarrow}}\; \frac{\partial}{\partial t}\!\left[(-k^2-l^2-\tfrac{f_0^2}{c^2})\eta\right]+\beta(ik\eta)=0 \\ &\mathrel{\underset{\text{apply }\frac{\partial}{\partial t}}{\Rightarrow}}\; (-k^2-l^2-\tfrac{f_0^2}{c^2})(-i\omega\eta)+i\beta k\,\eta=0 \\ &\mathrel{\underset{\text{factor }i\eta\neq0}{\Rightarrow}}\; i\eta\Big[\omega\!\left(k^2+l^2+\tfrac{f_0^2}{c^2}\right)+\beta k\Big]=0 \\ &\mathrel{\underset{\text{set bracket }=0}{\Rightarrow}}\; \omega\!\left(k^2+l^2+\tfrac{f_0^2}{c^2}\right)+\beta k=0 \\ &\mathrel{\underset{\text{solve for }\omega}{\Rightarrow}}\; \boxed{\displaystyle \omega=-\frac{\beta k}{\,k^2+l^2+\tfrac{f_0^2}{c^2}\,}} \end{aligned} \]

(With $\omega>0$ by convention, the signs of $k$ and $l$ set the phase-propagation direction)