Dispersion Relation for Rossby Waves
Assume the solutions of the quasi-geostrophic form of the linearized vorticity equation \(\boxed{\left( \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} - \frac{f_0^2}{c^2} \eta \right)
+ \beta \ \frac{\partial \eta}{\partial x} = 0}\) will be in the form
$$
\eta = \hat{\eta} \exp\{ i(kx + ly - \omega t) \}
$$
and regard $\omega$ as positive; the signs of $k$ and $l$ then determine the direction of phase propagation
Substituting this assumed solution form into \(\boxed{\left( \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} - \frac{f_0^2}{c^2} \eta \right)
+ \beta \ \frac{\partial \eta}{\partial x} = 0}\) gives
$$
\omega = -\frac{\beta k}{k^2 + l^2 + f_0^2/c^2}
$$
This is the dispersion relation for Rossby waves
\[
\begin{aligned}
\eta=\hat{\eta}\,e^{i(kx+ly-\omega t)}
&\mathrel{\underset{\text{compute derivatives}}{\Rightarrow}}\;
\frac{\partial\eta}{\partial t}=-i\omega\eta,\quad
\frac{\partial\eta}{\partial x}=ik\eta,\quad
\frac{\partial^2\eta}{\partial x^2}=-k^2\eta,\quad
\frac{\partial^2\eta}{\partial y^2}=-l^2\eta
\\
&\mathrel{\underset{\text{substitute}}{\Rightarrow}}\;
\frac{\partial}{\partial t}\!\left[(-k^2-l^2-\tfrac{f_0^2}{c^2})\eta\right]+\beta(ik\eta)=0
\\
&\mathrel{\underset{\text{apply }\frac{\partial}{\partial t}}{\Rightarrow}}\;
(-k^2-l^2-\tfrac{f_0^2}{c^2})(-i\omega\eta)+i\beta k\,\eta=0
\\
&\mathrel{\underset{\text{factor }i\eta\neq0}{\Rightarrow}}\;
i\eta\Big[\omega\!\left(k^2+l^2+\tfrac{f_0^2}{c^2}\right)+\beta k\Big]=0
\\
&\mathrel{\underset{\text{set bracket }=0}{\Rightarrow}}\;
\omega\!\left(k^2+l^2+\tfrac{f_0^2}{c^2}\right)+\beta k=0
\\
&\mathrel{\underset{\text{solve for }\omega}{\Rightarrow}}\;
\boxed{\displaystyle \omega=-\frac{\beta k}{\,k^2+l^2+\tfrac{f_0^2}{c^2}\,}}
\end{aligned}
\]
(With $\omega>0$ by convention, the signs of $k$ and $l$ set the phase-propagation direction)
◀
▶