Step 1: Differentiate the zonal momentum equation with respect to \(y\)
\[\frac{\partial}{\partial y} \left( \textcolor{#002eff}{\frac{\partial u}{\partial t}} \right)
+ \frac{\partial}{\partial y} \left( \textcolor{#002eff}{u \frac{\partial u}{\partial x}} \right)
+ \frac{\partial}{\partial y} \left( \textcolor{#002eff}{v \frac{\partial u}{\partial y}} \right)
- \frac{\partial}{\partial y} \left( \textcolor{#002eff}{f v} \right)
= -g \frac{\partial^2 \eta}{\partial x \partial y}\]
Step 2: Differentiate the meridional momentum equation with respect to \(x\)
\[\frac{\partial}{\partial x} \left( \textcolor{#004d24}{\frac{\partial v}{\partial t}} \right)
+ \frac{\partial}{\partial x} \left( \textcolor{#004d24}{u \frac{\partial v}{\partial x}} \right)
+ \frac{\partial}{\partial x} \left( \textcolor{#004d24}{v \frac{\partial v}{\partial y}} \right)
+ \frac{\partial}{\partial x} \left( \textcolor{#004d24}{f u} \right)
= -g \frac{\partial^2 \eta}{\partial x \partial y}\]
Step 3: Subtract the meridional \(x\)-derivative from the zonal \(y\)-derivative, subtracting these eliminates the pressure gradient terms
\[
\left( \frac{\partial}{\partial y} \textcolor{#002eff}{\frac{\partial u}{\partial t}} - \frac{\partial}{\partial x} \textcolor{#004d24}{\frac{\partial v}{\partial t}} \right)
+ \left( \frac{\partial}{\partial y} \textcolor{#002eff}{u \frac{\partial u}{\partial x}} - \frac{\partial}{\partial x} \textcolor{#004d24}{u \frac{\partial v}{\partial x}} \right)
+ \left( \frac{\partial}{\partial y} \textcolor{#002eff}{v \frac{\partial u}{\partial y}} - \frac{\partial}{\partial x} \textcolor{#004d24}{v \frac{\partial v}{\partial y}} \right)
- \left( \frac{\partial}{\partial y} \textcolor{#002eff}{f v} + \frac{\partial}{\partial x} \textcolor{#004d24}{f u} \right)
= 0
\]
Step 4: Group into vorticity form by the defination of relative vorticity \(
\boxed{\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}}\)
Group the term as time derivative of vorticity \(\boxed{\frac{\partial}{\partial t} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
}\), nonlinear advection of vorticity \(\boxed{\frac{\partial}{\partial x} \left( u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right)
- \frac{\partial}{\partial y} \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right)}\) and coriolis terms (using \(f = f_0 + \beta y\)) \(\boxed{f_0 \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \beta v}\)
Final Result: Vorticity Equation
\[\frac{\partial}{\partial t} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
+ \frac{\partial}{\partial x} \left( u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right)
- \frac{\partial}{\partial y} \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right)
+ f_0 \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)
+ \beta v = 0\]