Potential Vorticity Conservation in Shallow-Water Theory
Vorticity Equation \[\frac{\partial}{\partial t} \left( \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial x} \left( u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) - \frac{\partial}{\partial y} \left( u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) + f_0 \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \beta v = 0\]
Following the customary β-plane approximation, \(f\) has been treated as constant (and replaced by an average value \(f_0\)) except when \(df/dy\) appears \[ \zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \] as the vertical component of relative vorticity, the vorticity measured relative to the rotating earth
\[ \underbrace{ \underbrace{u \frac{\partial \zeta}{\partial x}}_{\text{advection by } u} + \underbrace{v \frac{\partial \zeta}{\partial y}}_{\text{advection by } v} }_{\text{material derivative of } \zeta} + \underbrace{ \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \zeta }_{\text{divergent stretching of } \zeta} \] \[ \underbrace{ \frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} }_{= \frac{D \zeta}{D t}} + (\zeta + f_0)\left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \beta v = 0 \text{ or } \frac{D \zeta}{Dt} + (\zeta + f_0)\left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \beta v = 0 \] For this section, \(D/Dt\) is the derivative following only the horizontal motion of the layer \(\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}\) \[ \frac{D\zeta}{Dt} + (\zeta + f_0) \underbrace{ \cancel{ \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) } }_{\text{from continuity: } \frac{D h}{Dt} + h \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0 \Rightarrow \frac{D\zeta}{Dt} + (\zeta + f_0) \left( -\frac{1}{h} \frac{D h}{D t} \right) + \beta v = 0} + \beta v = 0 \] \[ \Rightarrow \frac{D\zeta}{Dt} = \underbrace{ \left( \frac{\zeta + f_0}{h} \right) \frac{D h}{D t} }_{\text{divergence replaced using continuity}} - \beta v \text{ or } \underbrace{ \frac{D(\zeta + f)}{Dt} }_{\substack{f = f_0 + \beta y \\ \frac{Df}{Dt} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} = 0 + 0 + \beta v }} = \left( \frac{\zeta + f}{h} \right) \frac{D h}{Dt} \Rightarrow \frac{D}{Dt} \left( \frac{\zeta + f}{h} \right) = 0 \]