Let \( \mathbf{r} \) be the position vector of an arbitrary fluid element, \(\boxed{\left( \frac{d\mathbf{B}}{dt} \right)_I = \left( \frac{d\mathbf{B}}{dt} \right)_R + \boldsymbol{\Omega} \times \mathbf{B}}\)
\(\Rightarrow
\left( \frac{d\mathbf{r}}{dt} \right)_I = \left( \frac{d\mathbf{r}}{dt} \right)_R + \boldsymbol{\Omega} \times \mathbf{r}
\)
This means the velocity in the inertial frame \( \mathbf{u}_I \) is the sum of the velocity in the rotating frame and the velocity due to rotation
\(
\mathbf{u}_I = \mathbf{u}_R + \boldsymbol{\Omega} \times \mathbf{r}
\),
\( \mathbf{u}_R \) is called the relative velocity
According to Newton’s second law, the acceleration in the inertial frame determines the force per unit mass.
Applying \(\boxed{\left( \frac{d\mathbf{B}}{dt} \right)_I = \left( \frac{d\mathbf{B}}{dt} \right)_R + \boldsymbol{\Omega} \times \mathbf{B}}\) to \( \mathbf{u}_I \) gives
\(
\left( \frac{d\mathbf{u}_I}{dt} \right)_I = \left( \frac{d\mathbf{u}_I}{dt} \right)_R + \boldsymbol{\Omega} \times \mathbf{u}_I
\)
1 Pedlosky, J. (1982). Geophysical Fluid Dynamics. Springer study edition. Springer, Berlin, Heidelberg.