Control Volume
The dot product of a second-order tensor and a vector yields a second vector; this operation is often called the contracted product or the inner product of a tensor and a vector.
In our case, it turns out that the inner product of the stress tensor \(\sigma_{ij}\) and the unit outward normal vector \(\vec{n}\) of a differential surface element StressTensorFacesyields a vector whose magnitude is the force per unit area acting on the surface element and whose direction is the direction of the surface force itself
Surface force acting on a differential surface element \( d\vec{F}_{\text{surface}} = \sigma_{ij} \vec{n} \, dA \)
Total surface force acting on control surface \( \sum \vec{F}_{\text{surface}} = \int_{\text{CS}} \sigma_{ij} \vec{n} \, dA \)
\(\boxed{\sum \vec{F}_{\text{body}} = \int_{\text{CV}} \rho \vec{g} \, dV = m_{\text{CV}} \vec{g}}\) and \(\boxed{\sum \vec{F}_{\text{surface}} = \int_{\text{CS}} \sigma_{ij} \vec{n} \, dA}\) into \( \boxed{\sum \vec{F} = \sum \vec{F}_{\text{body}} + \sum \vec{F}_{\text{surface}}}\) \[ \sum \vec{F} = \sum \vec{F}_{\text{body}} + \sum \vec{F}_{\text{surface}} = \int_{\text{CV}} \rho \vec{g} \, dV + \int_{\text{CS}} \sigma_{ij} \vec{n} \, dA \]
\[ \underbrace{\sum \vec{F}}_{\text{total force}} = \underbrace{\sum \vec{F}_{\text{gravity}}}_{\text{body force}} + \underbrace{\sum \vec{F}_{\text{pressure}} + \sum \vec{F}_{\text{viscous}} + \sum \vec{F}_{\text{other}}}_{\text{surface forces}} \]

1Fluid Mechanics: Fundamentals and Applications Fourth Edition. Çengel and J. M. Cimbala, McGraw-Hill, New York (2018).