Shallow-Water Modelling
- Linear "barotropic" and "baroclinic" layered model for $f = 0$ in 1D
$$
\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x},
\qquad
\frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0
$$
- $h$ is total thickness ("barotropic") or layer interface $h_i$ ("baroclinic")
- Either $g = 9.81 \, \text{m/s}^2$ ("barotropic")
or $g \to g \Delta \rho / \rho_0$ ("baroclinic")
- The linearized 1D shallow water equations (for $f = 0$) are
$$
\frac{\partial u}{\partial t} = - \frac{\partial h}{\partial x},
\quad
\frac{\partial h}{\partial t} = -c^2 \frac{\partial u}{\partial x}
$$
- Discrete version for staggered grid
$$
\frac{d u_n}{dt} = -\delta^+ h_n,
\quad
\frac{d h_n}{dt} = -c^2 \delta^- u_n
$$
- With the finite differencing operators
$$
\delta^+ h_n = \frac{h_{n+1} - h_n}{\Delta},
\quad
\delta^- h_n = \frac{h_n - h_{n-1}}{\Delta}
$$
- Wave ansatz
$
u_n = \hat{u}(t) e^{ikx},
\quad
h_n = \hat{h}(t) e^{ikx}$
with $x = n\Delta, \; n=0,1,\dots
$
$$
\delta^+ h_n = \hat{h} e^{ikn\Delta} \frac{(e^{ik\Delta} - 1)}{\Delta},
\qquad
\delta^- u_n = \hat{u} e^{ikn\Delta} \frac{(1 - e^{-ik\Delta})}{\Delta}
$$
◀
▶