Finite Difference Approximation
$$ \frac{\partial f_i}{\partial x} \;=\; \frac{f_{j+1} - f_{j-1}}{2\Delta x} \;-\; \frac{\partial^3 f_j}{\partial x^3} \frac{\Delta x^2}{6} \;+\; \cdots $$ The first error term contains $\Delta x^2$ instead of $\Delta x$, showing that if we divide $\Delta x$ by two, the error will go down by a factor of four. Since the error is directly related to the second power of $\Delta x$, it is a second-order approximation to the first derivative
The second-order approximation can also be derived by taking the average of the first-order approximations using $f_{j+1}$ and $f_{j-1}$, and it is presumably intuitive that the average would give us a better approximation
\begin{align} f_{j+1} + f_{j-1} &= \Bigg[ f_j + \frac{\partial f_j}{\partial x}\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} + \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^4}{24} + \cdots \Bigg] \\ &\quad + \Bigg[ f_j - \frac{\partial f_j}{\partial x}\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} - \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^4}{24} + \cdots \Bigg] \\[6pt] &= 2 f_j + \cancel{\frac{\partial f_j}{\partial x}\Delta x} - \cancel{\frac{\partial f_j}{\partial x}\Delta x} + \frac{\partial^2 f_j}{\partial x^2} \Delta x^2 + \cancel{\frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6}} - \cancel{\frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6}} + \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^4}{12} + \cdots \\ \implies \frac{\partial^2 f_j}{\partial x^2} &= \frac{f_{j+1} - 2 f_j + f_{j-1}}{\Delta x^2} - \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^2}{12} + \cdots \end{align}

By using larger number of points we can derive approximations for higher derivatives and with higher-order error terms