Finite Difference Approximation
Consider the function $f(x)$, given at points $x_{j-1}, x_j, x_{j+1},$ and so on. Denote $f_{j-1} = f(x_{j-1})$, $f_j = f(x_j)$, and $f_{j+1} = f(x_{j+1})$. The values at different points can be related to each other by a Taylor series $$ f_{j+1} = f_j + \frac{\partial f_j}{\partial x}\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} + \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^4}{24} + \cdots $$ where the derivatives are taken at $x_j$
Give an expression for the first derivative $$ \frac{\partial f_j}{\partial x} = \frac{f_{j+1} - f_j}{\Delta x} - \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x}{2} - \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^2}{6} - \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^3}{24} + \cdots $$ As $\Delta x \to 0$, all the terms on the right-hand side go to zero, except for the first one. Since the error is directly related to the first power of $\Delta x$, it is a first-order approximation to the first derivative
Instead of writing $f_{j+1}$ as a Taylor series expansion of $f_j$ to get an approximation for the derivative at $x_j$, we could just as well have written $f_{j-1}$ as a Taylor series expansion of $f_j$, by replacing $\Delta x$ by $-\Delta x$ $$ f_{j-1} = f_j - \frac{\partial f_j}{\partial x}\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} - \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \frac{\partial^4 f_j}{\partial x^4}\frac{\Delta x^4}{24} + \cdots $$

\[ \begin{aligned} f_{j+1}-f_{j-1} &=\Bigg( f_j + \frac{\partial f_j}{\partial x}\,\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} + \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \cdots \Bigg) \\ &\quad- \Bigg( f_j - \frac{\partial f_j}{\partial x}\,\Delta x + \frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} - \frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} + \cdots \Bigg) \\ &= \cancel{f_j}-\cancel{f_j} +\;2\,\frac{\partial f_j}{\partial x}\,\Delta x +\;\cancel{\frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2} -\frac{\partial^2 f_j}{\partial x^2}\frac{\Delta x^2}{2}} +\;2\,\frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{6} +\;\cdots \\ &= 2\Delta x\,\frac{\partial f_j}{\partial x} +\frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^3}{3} +\cdots\\ \Rightarrow \frac{\partial f_j}{\partial x} &= \frac{f_{j+1}-f_{j-1}}{2\Delta x} -\frac{\partial^3 f_j}{\partial x^3}\frac{\Delta x^2}{6} +\cdots \end{aligned} \]