\(
\hat{u} = \frac{-ikg \hat{\eta}}{-i\omega} = \frac{\cancel{-} \cancel{i} k g \hat{\eta}}{\cancel{-} \cancel{i} \omega} = \frac{k g \hat{\eta}}{\omega} \quad \text{(from } -i\omega \hat{u} = -ikg \hat{\eta} \text{)},
\quad
\hat{u} = -\frac{g}{f} \frac{d\hat{\eta}}{dy} \quad \text{(from } f\hat{u} = -g \frac{d\hat{\eta}}{dy} \text{)}\)
\(
\Rightarrow \quad \frac{k g \hat{\eta}}{\omega} = -\frac{g}{f} \frac{d\hat{\eta}}{dy}
\quad \Rightarrow \quad \frac{d\hat{\eta}}{dy} + \frac{f k}{\omega} \hat{\eta} = 0
\quad \Rightarrow \quad \boxed{\frac{d\hat{\eta}}{dy} \pm \left( \frac{f}{c} \right) \hat{\eta} = 0}
\quad \text{with } c = \sqrt{gH},\ \omega = \pm k c
\)
\[
\begin{aligned}
&\frac{d\hat{\eta}}{dy} \pm \left( \frac{f}{c} \right) \hat{\eta} = 0
\quad \Rightarrow \quad
\hat{\eta}(y) =
\underbrace{\eta_0}_{\substack{\text{amplitude at the coast} \\ (y = 0)}}
\cdot
\underbrace{e^{-fy/c}}_{\substack{\text{decays away} \\ \text{from the coast}}}
\\
&\eta(x,y,t) =
\Re\left\{ \hat{\eta}(y) e^{i(kx - \omega t)} \right\}
=
\boxed{
\overbrace{
\eta_0 e^{-fy/c}
}^{\substack{\text{amplitude and} \\ \text{decay}}}
\cdot
\underbrace{\cos\left(k(x - ct)\right)}_{\substack{\text{sea surface slope} \\ \text{(oscillates in }x\text{ and }t)}}
}
\\
&u(x,y,t) =
\Re\left\{ \hat{u}(y) e^{i(kx - \omega t)} \right\}
=
\boxed{
\overbrace{
\eta_0 \sqrt{g/H}
}^{\substack{\text{from } \partial \eta/\partial t \\ \text{and continuity}}}
\cdot
e^{-fy/c}
\cdot
\underbrace{\cos\left(k(x - ct)\right)}_{\text{velocity field}}
}\end{aligned}
\]