Quasi-Geostrophic Vorticity Equation
$$
\begin{aligned}
&h\,\frac{D}{Dt}(\zeta+f)-(\zeta+f)\frac{Dh}{Dt}=0
\\[6pt]
&\mathrel{\underset{\text{expand }D/Dt,\;Dh/Dt}{\Rightarrow}}\;
h\!\left(\frac{\partial\zeta}{\partial t}+u\frac{\partial\zeta}{\partial x}+v\frac{\partial\zeta}{\partial y}+\frac{Df}{Dt}\right)
-(\zeta+f)\!\left(\frac{\partial h}{\partial t}+u\frac{\partial h}{\partial x}+v\frac{\partial h}{\partial y}\right)=0
\\[6pt]
&\mathrel{\underset{f=f_0+\beta y,\;h=H+\eta}{\Rightarrow}}\;
(H+\eta)\!\left(\frac{\partial\zeta}{\partial t}+u\frac{\partial\zeta}{\partial x}+v\frac{\partial\zeta}{\partial y}+\beta v\right)
-(\zeta+f)\!\left(\frac{\partial\eta}{\partial t}+u\frac{\partial\eta}{\partial x}+v\frac{\partial\eta}{\partial y}\right)=0
\\[6pt]
&\mathrel{\underset{\beta\text{-plane: replace }f\to f_0\text{ in factor}}{\Rightarrow}}\;
(H+\eta)\!\left(\frac{\partial\zeta}{\partial t}+u\frac{\partial\zeta}{\partial x}+v\frac{\partial\zeta}{\partial y}+\beta v\right)
-(\zeta+f_0)\!\left(\frac{\partial\eta}{\partial t}+u\frac{\partial\eta}{\partial x}+v\frac{\partial\eta}{\partial y}\right)=0
\\[6pt]
&\mathrel{\underset{\text{linearize: keep only first order}}{\Rightarrow}}\;
\Big(H+\cancel{\eta}\Big)\!\left(\frac{\partial\zeta}{\partial t}
+\cancel{u\frac{\partial\zeta}{\partial x}}
+\cancel{v\frac{\partial\zeta}{\partial y}}
+\beta v\right)
-\Big(\cancel{\zeta}+f_0\Big)\!\left(\frac{\partial\eta}{\partial t}
+\cancel{u\frac{\partial\eta}{\partial x}}
+\cancel{v\frac{\partial\eta}{\partial y}}\right)=0
\\[6pt]
&\mathrel{\underset{\text{drop cancelled terms}}{\Rightarrow}}\;
H\,\frac{\partial\zeta}{\partial t}+H\,\beta v-f_0\,\frac{\partial\eta}{\partial t}=0
\end{aligned}
$$
\[H\,\frac{\partial\zeta}{\partial t}+H\,\beta v-f_0\,\frac{\partial\eta}{\partial t}=0\]
This is the linearized form of the potential vorticity equation
◀
▶