Internal Waves
Assume a complex exponential traveling-wave solution of the form $$ (u, v, w) = (\hat{u}(z), \hat{v}(z), \hat{w}(z)) \exp \left\{ i(kx + ly - \omega t) \right\} $$
Substitution of \(\boxed{(u, v, w) = (\hat{u}(z), \hat{v}(z), \hat{w}(z)) \exp \left\{ i(kx + ly - \omega t) \right\} }\) into \(\boxed{\frac{\partial^2}{\partial t^2} \nabla^2 w + N^2 \nabla_H^2 w + f^2 \frac{\partial^2 w}{\partial z^2} = 0 }\) leads to an ordinary differential equation $$ (-i\omega)^2 \left[ (ik)^2 + (il)^2 + \frac{d^2}{dz^2} \right] \hat{w} + N^2 \left[ (ik)^2 + (il)^2 \right] \hat{w} + f^2 \frac{d^2 \hat{w}}{dz^2} = 0 $$
Simplified to $$ \frac{d^2 \hat{w}}{dz^2} + m^2(z) \hat{w} = 0 \quad \text{where} \quad m^2(z) \equiv \frac{(k^2 + l^2)(N^2(z) - \omega^2)}{\omega^2 - f^2} $$