A classical trigonometric series is a series of the form \[ \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( a_k \cos kx + b_k \sin kx \right) \] If \(\boxed{a_k = a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx, k = 0, 1, \ldots}\) and \(\boxed{b_k = b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx, k = 1, 2, \ldots}\) have meaning for a function \( f \), then the trigonometric series assigned to \( f \) is called the trigonometric Fourier series of \( f \) \[ f \sim \frac{a_0(f)}{2} + \sum_{k=1}^{\infty} a_k(f) \cos kx + b_k(f) \sin kx \] Fourier transform of the function \( f : \mathbb{R} \to \mathbb{C} \) \[ \mathcal{F}[f](\xi) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-i \xi x} \, dx \] The Fourier cosine transform and the Fourier sine transform of the function \( f \) \[ \mathcal{F}_c[f](\xi) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos \xi x \, dx \quad, \quad \mathcal{F}_s[f](\xi) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin \xi x \, dx \]
1Zorich, V.A. (2015). Fourier Series and the Fourier Transform. In: Mathematical Analysis II. Universitext. Springer, Berlin, Heidelberg.