Fluid Rotation

Now we can determine from \( \Delta \alpha \) and \( \Delta \beta \) a measure of the particle’s angular deformation, as shown in (d). To obtain the deformation of side \( oa \) in dRotationAngularDeformation2D.png, we use bRotationAngularDeformation2D.png and cRotationAngularDeformation2D.png

We need to convert these angular measures to quantities obtainable from the flow field. To do this, we recognize that (for small angles) \( \Delta \alpha = \Delta \eta / \Delta x \), and \( \Delta \beta = \Delta \xi / \Delta y \). But \( \Delta \xi \) arises because, if in interval \( \Delta t \) point \( o \) moves horizontally distance \( v_x \Delta t \), then point \( b \) will have moved distance \( (v_x + [\partial v_x / \partial y] \Delta y) \Delta t \) (using a Taylor series expansion)

\(\text{Let point } b \text{ be at } \Delta y \text{ above point } o\) \(\quad \because v_x(b) = v_x(o) + \left( \frac{\partial v_x}{\partial y} \right) \Delta y + \text{higher-order terms}\)
\(\because \ \text{Displacement}_b = \left( v_x + \frac{\partial v_x}{\partial y} \Delta y \right) \Delta t \quad \text{and} \quad \text{Displacement}_o = v_x \Delta t\)
\(\therefore \ \Delta \xi = \left( \frac{\partial v_x}{\partial y} \Delta y \right) \Delta t\) \(\quad \therefore \boxed{\ \Delta \beta = \frac{\Delta \xi}{\Delta y} = \left( \frac{\partial v_x}{\partial y} \right) \Delta t}\)

Likewise, \( \Delta \eta \) arises because, if in interval \( \Delta t \) point \( o \) moves vertically distance \( v \Delta t \), then point \( a \) will have moved distance \( (v_y + [\partial v_y / \partial x] \Delta x) \Delta t \)

\(\text{Let point } a \text{ be at } \Delta x \text{ to the right of point } o\) \(\quad \because \ v_y(a) = v_y(o) + \left( \frac{\partial v_y}{\partial x} \right) \Delta x + \text{higher-order terms}\)
\(\because \ \text{Displacement}_a = \left( v_y + \frac{\partial v_y}{\partial x} \Delta x \right) \Delta t \quad \text{and} \quad \text{Displacement}_o = v_y \Delta t\)
\(\therefore \ \Delta \eta = \left( \frac{\partial v_y}{\partial x} \Delta x \right) \Delta t\) \(\quad \therefore \ \boxed{\Delta \alpha = \frac{\Delta \eta}{\Delta x} = \left( \frac{\partial v_y}{\partial x} \right) \Delta t}\)

\(\text{Hence } \boxed{\Delta \xi = \left( v_x + \frac{\partial v_x}{\partial y} \Delta y \right) \Delta t - v_x \Delta t = \frac{\partial v_x}{\partial y} \Delta y \Delta t \quad,\quad \Delta \eta = \left( v_y + \frac{\partial v_y}{\partial x} \Delta x \right) \Delta t - v_y \Delta t = \frac{\partial v_y}{\partial x} \Delta x \Delta t} \)