Fluid Translation

The translation of a fluid particle is connected with the velocity field \(\vec{V} = \vec{V}(x, y, z, t)\) that previously discussed

Stated simply, the problem is: Given the velocity field, \(\vec{V} = \vec{V}(x, y, z, t)\), find the acceleration of a fluid particle, \(\vec{a}_p\)

ParticleMotionFlowField
\( \frac{D \vec{V}}{D t} \equiv \vec{a}_p = u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z} + \frac{\partial \vec{V}}{\partial t} \) \(\quad \boxed{ \vec{a}_p = \frac{D \vec{V}}{D t} = \underbrace{u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z}}_{\text{convective acceleration}} + \underbrace{\frac{\partial \vec{V}}{\partial t}}_{\text{local acceleration}}} \)
\[ a_{x_p} = \frac{D u}{D t} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t} \] \[ a_{y_p} = \frac{D v}{D t} = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t} \] \[ a_{z_p} = \frac{D w}{D t} = u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial w}{\partial t} \]

\[ a_{r_p} = V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} - \frac{V_\theta^2}{r} + V_z \frac{\partial V_r}{\partial z} + \frac{\partial V_r}{\partial t} \] \[ a_{\theta_p} = V_r \frac{\partial V_\theta}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{V_r V_\theta}{r} + V_z \frac{\partial V_\theta}{\partial z} + \frac{\partial V_\theta}{\partial t} \] \[ a_{z_p} = V_r \frac{\partial V_z}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z} + \frac{\partial V_z}{\partial t} \]

CylindricalCoordinates

1Fox and McDonald's Introduction to Fluid Mechanics, 8th Edition.