\[\text{Rate of angular deformation in } xy \text{ plane}
=\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)\]
\[\text{Rate of angular deformation in } yz \text{ plane}
=\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)\]
\[\text{Rate of angular deformation in } zx \text{ plane}=
\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\]
Rate of rotation (angular velocity) at a point is defined as the average
rotation rate of two initially perpendicular lines that intersect at that point
Rate of translation vector in Cartesian coordinates
\[
\vec{V} = u\,\vec{i} + v\,\vec{j} + w\,\vec{k}
\]
Rate of rotation vector in Cartesian coordinates
\[\vec{\omega}=
\frac{1}{2}
\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)\vec{i}
+
\frac{1}{2}
\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)\vec{j}
+
\frac{1}{2}
\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\vec{k}
\]