Definition: Let \( A \) be an \( n \times n \) matrix. A real number \( \lambda \) is called an eigenvalue of \( A \) if there exists a nonzero vector \( \mathbf{v} \) in \( \mathbb{R}^n \) for which \[ A\mathbf{v} = \lambda \mathbf{v} \] Such a (nonzero) vector \( \mathbf{v} \) is then called an eigenvector of \( A \) for the eigenvalue \( \lambda \)
1Linear Algebra. André Hensbergen & Nikolaas Verhulst. 2024.
https://doi.org/10.59490/tb.88
2Introduction to Linear Algebra, Sixth Edition (2023). Gilbert Strang. ISBN : 978-17331466-7-8