Physical Meaning of the Reynolds Stress Transport Equation
$$
\frac{\partial \overline{u_i u_j}}{\partial t}+C_{ij}
= P_{ij}+\Phi_{ij}+d^{\nu}_{ij}+d^{t}_{ij}+d^{p}_{ij}-\varepsilon_{ij}
$$
Convection term
$$
C_{ij}=U_k\,\frac{\partial \overline{u_i u_j}}{\partial x_k}
$$
Production term
$$
P_{ij}=-\Big(\,\overline{u_i u_k}\,\frac{\partial U_j}{\partial x_k}
+\overline{u_j u_k}\,\frac{\partial U_i}{\partial x_k}\Big)
$$
Pressure-strain-rate correlation
$$
\Phi_{ij}= \overline{\frac{p}{\rho}\Big(\frac{\partial u_i}{\partial x_j}
+\frac{\partial u_j}{\partial x_i}\Big)}
$$
Molecular diffusion
$$
d^{\nu}_{ij}=\frac{\partial}{\partial x_k}
\Big(\nu\,\frac{\partial \overline{u_i u_j}}{\partial x_k}\Big)
$$
Velocity-fluctuation diffusion
$$
d^{t}_{ij}=-\,\frac{\partial}{\partial x_k}\overline{u_i u_j u_k}
$$
Pressure-fluctuation diffusion
$$
d^{p}_{ij}=-\,\frac{\partial}{\partial x_k}
\!\left(\frac{\overline{p\,u_j}}{\rho}\,\delta_{ik}
+\frac{\overline{p\,u_i}}{\rho}\,\delta_{jk}\right)
$$
Viscous dissipation
$$
\varepsilon_{ij}=2\nu\,\overline{\frac{\partial u_i}{\partial x_k}
\frac{\partial u_j}{\partial x_k}}
$$
◀
▶