Substitute $A_\pm$ into the dynamic boundary condition, starting from
$$
\rho_1\bigl(-ikcA_{-}+ikU_1A_{-}+g\zeta_0\bigr)
=
\rho_2\bigl(-ikcA_{+}+ikU_2A_{+}+g\zeta_0\bigr),
$$
and using
$$
kA_{-}=-(ikU_1-ikc)\zeta_0, \qquad
kA_{+}=(ikU_2-ikc)\zeta_0,
$$
divide by the common factor $\zeta_0$
$$
\rho_1\!\Bigl(( -ikc+ikU_1 )^{2}+gk\Bigr)
=
\rho_2\!\Bigl(( -ikc+ikU_2 )^{2}+gk\Bigr)
$$
\(\rightarrow\)Two solutions
$$
c=\frac{\rho_2U_2+\rho_1U_1}{\rho_2+\rho_1}
\pm
\left[
\left(\frac{\rho_2-\rho_1}{\rho_2+\rho_1}\right)\frac{g}{k}
-
\frac{\rho_2\rho_1}{(\rho_2+\rho_1)^2}(U_2-U_1)^2
\right]^{1/2}
$$
Neutral stability occurs when the term inside the square root is non-negative.
Instability (exponential growth, $c_i>0$) occurs when
$$
\left(\frac{\rho_2-\rho_1}{\rho_2+\rho_1}\right)\frac{g}{k}
<
\frac{\rho_2\rho_1}{(\rho_2+\rho_1)^{2}}(U_2-U_1)^{2}
$$
or equivalently
$$
g(\rho_2^{2}-\rho_1^{2})
<
k\rho_1\rho_2(U_2-U_1)^{2}
$$
This occurs when the free-stream velocity difference is high enough
the density difference is small enough
or the wave number $k$ is large enough
◀
▶