Subtracting the pressure expression from the undisturbed pressure state $$ \rho_1\!\left(C_1-\tfrac{1}{2}U_1^{2}\right) -\rho_1\!\left(C_1-\frac{\partial \tilde{\phi}_1}{\partial t}-\frac{1}{2}\left|\nabla \tilde{\phi}_1\right|^{2}-gz\right) = \rho_2\!\left(C_2-\tfrac{1}{2}U_2^{2}\right) -\rho_2\!\left(C_2-\frac{\partial \tilde{\phi}_2}{\partial t}-\frac{1}{2}\left|\nabla \tilde{\phi}_2\right|^{2}-gz\right) $$ $$ \xrightarrow{\text{Insert }\tilde{\phi}_1=U_1x+\phi_1,\ \tilde{\phi}_2=U_2x+\phi_2\ \text{and simplify}} \rho_1\!\left( \frac{\partial \phi_1}{\partial t} +U_1\frac{\partial \phi_1}{\partial x} +\frac{1}{2}\left|\nabla \phi_1\right|^{2}+gz \right) = \rho_2\!\left( \frac{\partial \phi_2}{\partial t} +U_2\frac{\partial \phi_2}{\partial x} +\frac{1}{2}\left|\nabla \phi_2\right|^{2}+gz \right) $$ Linearizing by dropping quadratic terms and evaluating derivatives at $z=0$ $$ \rho_1\!\left( \frac{\partial \phi_1}{\partial t} +U_1\frac{\partial \phi_1}{\partial x} +g\zeta \right) = \rho_2\!\left( \frac{\partial \phi_2}{\partial t} +U_2\frac{\partial \phi_2}{\partial x} +g\zeta \right) \quad \text{on } z=0 $$ Thus, the field equations $ \nabla^{2}\phi_{1}=0, \quad \nabla^{2}\phi_{2}=0 $ , together with the boundary conditions $ \phi_{1}\to 0 \ \text{as}\ z\to +\infty,\quad \phi_{2}\to 0 \ \text{as}\ z\to -\infty $ and the relations $ - U_{1}\frac{\partial \zeta}{\partial x} + \frac{\partial \phi_{1}}{\partial z} = \frac{\partial \zeta}{\partial t} = - U_{2}\frac{\partial \zeta}{\partial x} + \frac{\partial \phi_{2}}{\partial z} $, $ \rho_{1}\!\left( \frac{\partial \phi_{1}}{\partial t} + U_{1}\frac{\partial \phi_{1}}{\partial x} + g\zeta \right) = \rho_{2}\!\left( \frac{\partial \phi_{2}}{\partial t} + U_{2}\frac{\partial \phi_{2}}{\partial x} + g\zeta \right) $ specify the linear stability of a velocity discontinuity between uniform flows of different speeds and densities
◀ ▶