Elementary Lubrication Theory
$$ Re_L = \frac{\rho U L}{\mu}, \quad \Lambda = \frac{\mu U L}{P_a h^2} \equiv \text{bearing number} \equiv \frac{\text{viscous force}}{\text{pressure force}} $$ $$ \Lambda \sim \text{near unity}, \quad Re_L \ \text{finite}, \quad \varepsilon \ll 1 $$
$$ \varepsilon^2 Re_L \to 0 \quad \Rightarrow \quad x-y \ \text{momentum:} \quad 0 \cong -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 u}{\partial y^2}, \quad 0 \cong -\frac{\partial p}{\partial y} $$ $$ \Rightarrow \quad u(x,y,t) \cong \frac{1}{\mu} \frac{\partial p(x,t)}{\partial x} \frac{y^2}{2} + A y + B $$

Boundary conditions

$$ \Rightarrow u(x,y,t) \;\cong\; -\frac{h^2(x,t)}{2\mu} \frac{\partial p(x,t)}{\partial x} \frac{y}{h(x,t)}\left(1 - \frac{y}{h(x,t)}\right) + \big(U_h(t) - U_0(t)\big)\frac{y}{h(x,t)} + U_0(t) $$

★ Balancing viscous & pressure forces → parabolic velocity profile in cross-stream
★ $p(x,t)$ within the gap has not yet been determined