Step 2. Create the Dimensional Matrix
Four base dimensions for flow problems (in the absence of electromagnetic forces and chemical reactions)
$$
\text{Mass } M, \quad \text{length } L, \quad \text{time } T, \quad \text{temperature } \Theta
$$
We denote the dimension of a variable $q$ by $[q]$
$$
[U] = \frac{L}{T}, \qquad
[P] = \frac{[\text{force}]}{[\text{area}]}
= \frac{MLT^{-2}}{L^2}
= ML^{-1}T^{-2}
$$
\[
\begin{array}{c|ccccccc}
& \qquad \Delta p \qquad & \qquad \Delta x \qquad &
\qquad d \qquad & \qquad \varepsilon \qquad &
\qquad U \qquad & \qquad \rho \qquad & \qquad \mu \qquad \\
\hline
M & \qquad 1 \qquad & \qquad 0 \qquad & \qquad 0 \qquad &
\qquad 0 \qquad & \qquad 0 \qquad & \qquad 1 \qquad & \qquad 1 \qquad \\
L & \qquad -1 \qquad & \qquad 1 \qquad & \qquad 1 \qquad &
\qquad 1 \qquad & \qquad 1 \qquad & \qquad -3 \qquad & \qquad -1 \qquad \\
T & \qquad -2 \qquad & \qquad 0 \qquad & \qquad 0 \qquad &
\qquad 0 \qquad & \qquad -1 \qquad & \qquad 0 \qquad & \qquad -1 \qquad \\
\end{array}
\]
◀
▶