[A]
(a) $$
\begin{array}{c|cccccccc}
& \quad \Delta \quad & \quad m \quad & \quad d \quad &
\quad \rho \quad & \quad \mu \quad & \quad \omega \quad &
\quad U \quad & \quad L \quad \\
\hline
\text{M} & \quad 0 \quad & \quad 1 \quad & \quad 0 \quad &
\quad 1 \quad & \quad 1 \quad & \quad 0 \quad &
\quad 0 \quad & \quad 0 \quad \\
\text{L} & \quad 1 \quad & \quad 0 \quad & \quad 1 \quad &
\quad -3 \quad & \quad -1 \quad & \quad 0 \quad &
\quad 1 \quad & \quad 1 \quad \\
\text{T} & \quad 0 \quad & \quad 0 \quad & \quad 0 \quad &
\quad 0 \quad & \quad -1 \quad & \quad -1 \qquad &
\quad -1 \quad & \quad 0 \quad \\
\end{array}
$$
The rank of this matrix is 3, 8 parameters - 3 dimensions = 5 groups
Construct the dimensionless groups $$
\Pi_1 = \frac{\Delta}{d},
\quad \Pi_2 = \frac{m}{\rho d^3},
\quad \Pi_3 = \frac{\rho U d}{\mu},
\quad \Pi_4 = \frac{\omega d}{U},
\quad \Pi_5 = \frac{L}{d}
$$
\(\therefore\) the dimensionless law for $\Delta$ is
$
\frac{\Delta}{d}
= \Phi \!\left( \frac{m}{\rho d^3}, \, \frac{\rho U d}{\mu}, \, \frac{\omega d}{U}, \, \frac{L}{d} \right)
$
where $\Phi$ is an undetermined function
(b) When the viscosity is no longer a parameter, the Reynolds number must drop out
$$
\frac{\Delta}{d} = \Psi\!\left(\frac{m}{\rho d^3}, \; \frac{\omega d}{U}, \; \frac{L}{d}\right)
$$
where $\Psi$ is an undetermined function
(c) When the rotation rate is no longer a parameter, the Strouhal number must drop out
$$
\frac{\Delta}{d} = \Theta\!\left(\frac{m}{\rho d^3}, \; \frac{L}{d}\right)
$$
where $\Theta$ is an undetermined function
(d) $\Delta$ does not depend on $U$ at all