Dynamic Similarity & Dimensionless Forms of the Equations
\begin{align} St &\equiv\; \text{Strouhal number} &\equiv\;& \frac{\text{Unsteady acceleration}}{\text{Advective acceleration}} \propto \frac{\partial u / \partial t}{u \, (\partial u / \partial n)} \propto \frac{\Omega U}{U^2 / L} & = \frac{\Omega L}{U} \\ Re &\equiv\; \text{Reynolds number} &\equiv\;& \frac{\text{Inertia force}}{\text{Viscous force}} \propto \frac{\rho u \left( \partial u / \partial n \right)}{\mu \left( \partial^2 u / \partial n^2 \right)} \propto \frac{\rho U^2 / L}{\mu U / L^2} & = \frac{\rho U L}{\mu} \\ Fr &\equiv\; \text{Froude number} &\equiv\;& \left[ \frac{\text{Inertia force}}{\text{Gravity force}} \right]^{1/2} \propto \left[ \frac{\rho u \left( \partial u / \partial n \right)}{\rho g} \right]^{1/2} \propto \left[ \frac{\rho U^2 / L}{\rho g} \right]^{1/2} & = \frac{U}{\sqrt{gL}} \end{align}

Mass conservation Eq.:$$ \frac{1}{\rho}\frac{D\rho}{Dt} = -\,\vec{\nabla} \cdot \vec{u} \;\;\underset{dp = c^{2} d\rho}{\overset{\text{assuming}}{\longrightarrow}}\;\; \frac{1}{\rho c^{2}}\frac{Dp}{Dt} = -\,\vec{\nabla} \cdot \vec{u} \qquad \text{i.e. sound speed} $$ Using $$ \vec{x}^{★} = \frac{\vec{x}}{L}, \quad t^{★} = \frac{Ut}{L}, \quad \vec{u}^{★} = \frac{\vec{u}}{U}, \quad p^{★} = \frac{p - p_{\infty}}{\rho U^2}, \quad \rho^{★} = \frac{\rho}{\rho_{\infty}} $$ $$ \left[ \frac{U^2}{c^2} \right] \frac{1}{\rho^{★}} \frac{Dp^{★}}{Dt^{★}} = - \vec{\nabla}^{★} \cdot \vec{u}^{★} $$ \( M \equiv \text{Mach number} = \left[ \frac{\text{inertial force}}{\text{compressibility force}} \right]^{1/2} \propto \left[ \frac{\rho U^2 / L}{\rho c^2 / L} \right]^{1/2} = \frac{U}{c} \)
Normally for gas flows $M < 0.3$ means incompressible