Equation \(\beta \overline{v} = \text{curl}_z(\boldsymbol{\tau}_T - \boldsymbol{\tau}_B)\) then becomes
\[ \beta \overline{v} = -r \overline{\zeta} + F_T(x, y) \]
\(
\because \beta \overline{v} = \text{curl}_z(\boldsymbol{\tau}_T - \boldsymbol{\tau}_B)
\)
\(
\text{The top stress is the wind stress \(\text{curl}_z(\boldsymbol{\tau}_T) = F_T(x, y)\) where \( F_T \) is a known forcing (wind stress curl)}
\)
\(
\text{The bottom stress is parameterized by linear Rayleigh drag \(\boldsymbol{\tau}_B = r \, \overline{\mathbf{u}} \Rightarrow \text{curl}_z(\boldsymbol{\tau}_B) = r \, \overline{\zeta}\) }
\)
\(
\text{where \( \overline{\zeta} = \frac{\partial \overline{v}}{\partial x} - \frac{\partial \overline{u}}{\partial y} \) is the vertically integrated relative vorticity}
\)
\(
\therefore \beta \overline{v} = \text{curl}_z(\boldsymbol{\tau}_T) - \text{curl}_z(\boldsymbol{\tau}_B) = F_T(x, y) - r \, \overline{\zeta} \Rightarrow \boxed{\beta \overline{v} = -r \, \overline{\zeta} + F_T(x, y)}
\)
Because the velocity is divergence-free, define a streamfunction \( \psi \) such that \( \overline{u} = -\frac{\partial \psi}{\partial y}, \quad \overline{v} = \frac{\partial \psi}{\partial x} \) \(\beta \overline{v} = -r \overline{\zeta} + F_T(x, y) \) then becomes \( r \nabla^2 \psi + \beta \frac{\partial \psi}{\partial x} = F_T(x, y) \)
\(
\because \text{Assuming the vertically integrated velocity field is incompressible \(\nabla \cdot \overline{\mathbf{u}} = \frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} = 0\)}, \overline{u} = -\frac{\partial \psi}{\partial y}, \overline{v} = \frac{\partial \psi}{\partial x}
\)
\(
\therefore \overline{\zeta} = \frac{\partial \overline{v}}{\partial x} - \frac{\partial \overline{u}}{\partial y} = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \nabla^2 \psi
\)
\(
\therefore \beta \frac{\partial \psi}{\partial x} = -r \nabla^2 \psi + F_T(x, y) \Rightarrow \boxed{r \nabla^2 \psi + \beta \frac{\partial \psi}{\partial x} = F_T(x, y)}
\)
◀
▶