The Stommel and Munk Models of the Wind-Driven Circulation
The full vorticity equation rewritten with streamfunction $\psi$ is
\begin{align}
&\overbrace{
\underbrace{\tfrac{\partial}{\partial t} (\nabla^2 \psi)}_{\text{Local change of relative vorticity }
\zeta = \tfrac{\partial v}{\partial x} - \tfrac{\partial u}{\partial y}}
+ \underbrace{J(\psi, \nabla^2 \psi)}_{\text{Jacobian, Nonlinear advection of vorticity}}
}^{\text{Material derivative } \tfrac{D\zeta}{Dt}}
+ \underbrace{\beta \psi_x}_{\text{Meridional advection of planetary vorticity}} \notag \\
&= \underbrace{\tfrac{f_0}{D} w_E}_{\text{Column Stretching/compression by Ekman pumping}}
- \underbrace{r \nabla^2 \psi}_{\text{Linear bottom friction}}
+ \underbrace{k_H \nabla^4 \psi}_{\text{Horizontal friction}}
\end{align}
with
\(
J(A, B) = A_x B_y - A_y B_x
\)
Stommel's assumption
- Include only linear bottom drag: keep $-r \nabla^2 \psi$
- Ignore $\nabla^4 \psi$ and nonlinear terms
\begin{align}
&\overbrace{
\cancel{
\underbrace{\tfrac{\partial}{\partial t} (\nabla^2 \psi)}_{\text{Local change of relative vorticity } \zeta}} +
\cancel{
\underbrace{J(\psi, \nabla^2 \psi)}_{\text{Nonlinear advection of vorticity}}}
}^{\text{Material derivative } \tfrac{D\zeta}{Dt}}
+ \underbrace{\beta \tfrac{\partial \psi}{\partial x}}_{\text{Meridional advection of planetary vorticity}} \notag \\
&= \underbrace{\tfrac{f_0}{D} w_E}_{\text{Ekman pumping (stretching/compression)}}
- \underbrace{r \nabla^2 \psi}_{\text{Linear bottom friction}}
+ \cancel{
\underbrace{k_H \nabla^4 \psi}_{\text{Horizontal friction}}}
\end{align}
$$
\frac{\partial^2 \psi}{\partial x^2} \gg \frac{\partial^2 \psi}{\partial y^2}
\quad \Rightarrow \quad
\boxed{
\beta \frac{\partial \psi}{\partial x}
=
\frac{f_0}{D} w_E
-
r \frac{\partial^2 \psi}{\partial x^2}
}
$$
Munk's extension
- Adds horizontal friction using biharmonic term $+k_H \nabla^4 \psi$
- Important for resolving realistic boundary layers
\begin{align}
&\overbrace{
\cancel{
\underbrace{\tfrac{\partial}{\partial t} (\nabla^2 \psi)}_{\text{Local change of relative vorticity } \zeta}} +
\cancel{
\underbrace{J(\psi, \nabla^2 \psi)}_{\text{Nonlinear advection of vorticity}}}
}^{\text{Material derivative } \tfrac{D\zeta}{Dt}}
+ \underbrace{\beta \tfrac{\partial \psi}{\partial x}}_{\text{Meridional advection of planetary vorticity}} \notag \\
&= \underbrace{\tfrac{f_0}{D} w_E}_{\text{Column Stretching/compression by Ekman pumping}}
- \underbrace{\cancel{r \nabla^2 \psi}}_{\text{Linear bottom friction}}
+ \underbrace{k_H \nabla^4 \psi}_{\text{Horizontal friction}}
\end{align}
Applying the western boundary layer assumption
$
\nabla^4 \psi \approx \frac{\partial^4 \psi}{\partial x^4}
\quad \Rightarrow \quad
\boxed{
\beta \frac{\partial \psi}{\partial x} = \frac{f_0}{D} w_E + k_H \frac{\partial^4 \psi}{\partial x^4}
}
$
◀
▶