Navier-Stokes equations for a hydrostatic ocean on the rotating sphere
  • Divergence
  • Reynolds averaging has been done already, and \(k\) is turbulent diffusivity
  • \(f = 2\Omega \sin\Theta, \text{ where } \Omega = \frac{2\pi}{\text{day}} = \frac{2\pi}{86400 \, \text{s}} \text{ and } \Theta \text{ is latitude}\)
  • For now, we avoid using the spherical coordinate system, so we use Taylor \( f(x) \approx f(x_0) + f'(x_0)\Delta x \) to approximate f: \( f = f_{o} + \left. \frac{\partial f}{\partial \theta} \right|_{\theta_{o}} \Delta \theta + \left. \frac{\partial^{2} f}{\partial \theta^{2}} \right|_{\theta_{o}} \frac{\Delta \theta^{2}}{2} + \cdots = 2 \Omega \sin \theta_{o} + 2 \Omega \cos \theta_{o} (\theta - \theta_{o}) + \mathcal{O}(\Delta \theta^{2}) = \boxed{f_{o} + \beta y} \)