Sverdrup Transport
$$
\underbrace{M_x}_{\substack{\text{zonal mass transport in the}\\\text{wind–driven layer}}}
= \int_{-D}^{0} \rho u(z) \, dz,
\qquad
\underbrace{M_y}_{\substack{\text{meridional mass transport in the}\\\text{wind–driven layer}}}
= \int_{-D}^{0} \rho v(z) \, dz
$$
Streamfunction representation of volume transport

$$
U = - \frac{\partial \Psi}{\partial y},
\qquad
V = \frac{\partial \Psi}{\partial x}
$$
Integrating westward from the eastern boundary
$$
\Psi(x,y)
= \frac{1}{\rho_{\text{ref}} \, \beta}
\int_{\text{eastern bdy}}^{x}
\underbrace{\hat{\mathbf{z}}}_{\substack{\text{vertical}\\\text{unit vector}}}
\cdot
\underbrace{\left( \nabla \times \boldsymbol{\tau}_{\text{wind}} \right)}_{\substack{\text{curl of}\\\text{wind stress}}}
\, dx
$$