Sverdrup Transport
$$ \underbrace{M_x}_{\substack{\text{zonal mass transport in the}\\\text{wind–driven layer}}} = \int_{-D}^{0} \rho u(z) \, dz, \qquad \underbrace{M_y}_{\substack{\text{meridional mass transport in the}\\\text{wind–driven layer}}} = \int_{-D}^{0} \rho v(z) \, dz $$
Streamfunction representation of volume transport VolumeStreamFunction.png $$ U = - \frac{\partial \Psi}{\partial y}, \qquad V = \frac{\partial \Psi}{\partial x} $$
Integrating westward from the eastern boundary $$ \Psi(x,y) = \frac{1}{\rho_{\text{ref}} \, \beta} \int_{\text{eastern bdy}}^{x} \underbrace{\hat{\mathbf{z}}}_{\substack{\text{vertical}\\\text{unit vector}}} \cdot \underbrace{\left( \nabla \times \boldsymbol{\tau}_{\text{wind}} \right)}_{\substack{\text{curl of}\\\text{wind stress}}} \, dx $$

1 Marshall J., Plumb R. A., . (2008). Atmosphere, ocean, and climate dynamics. Amsterdam: Elsevier Academic Press.

2 Robert H. Stewart. (2025). Introduction to Physical Oceanography (Stewart).