Sverdrup Transport
Equations of motion
\begin{align}
\text{I:} \quad & -fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \frac{1}{\rho_0} \frac{\partial \tau^x}{\partial z} \\
\text{II:} \quad & fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + \frac{1}{\rho_0} \frac{\partial \tau^y}{\partial z} \\
\text{III:} \quad & 0 = -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + g \\
\text{IV:} \quad & \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\quad \text{(continuity equation)}
\end{align}
Combine equations (I) and (II)
\begin{align}
\frac{\partial}{\partial x} \big(\text{II}\big) \;-\; \frac{\partial}{\partial y} \big(\text{I}\big): \quad
f \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \beta v
= \frac{1}{\rho_0} \left( \frac{\partial^2 p}{\partial x \partial y} - \frac{\partial^2 p}{\partial y \partial x} \right)
+ \frac{1}{\rho_0} \left( \frac{\partial^2 \tau^y}{\partial x \partial z} - \frac{\partial^2 \tau^x}{\partial y \partial z} \right)
\end{align}
Combine with continuity equation (IV)
\begin{align}
\beta v = f \frac{\partial w}{\partial z}
+ \frac{1}{\rho_0} \frac{\partial}{\partial z}
\left( \frac{\partial \tau^y}{\partial x} - \frac{\partial \tau^x}{\partial y} \right)
\end{align}
If there is no friction below the mixed layer, this simplifies to
\begin{align}
\beta V = f \frac{\partial w}{\partial z}
\end{align}
This is the Sverdrup Relation
At the ocean surface and bottom, \( w = 0 \).
Taking the depth integral \(\boxed{V_s = \int_{-D}^{0} v \, dz}\) yields
\begin{align}
V_s = \frac{1}{\beta \rho_0}
\left( \frac{\partial \tau^y}{\partial x} - \frac{\partial \tau^x}{\partial y} \right) = \frac{1}{\beta \rho_0} \, \text{curl} \, \boldsymbol{\tau}
\end{align}
!!! The Sverdrup Balance!
◀
▶