First assume that the spatial derivatives are approximated using central difference scheme and that the grid is uniform in the $x$-direction. In this case the same algebraic equation results from both Finite Difference and Finite Volume discretizations. The new variable value $\phi_i^{n+1}$ is: $$ \phi_i^{n+1} = \phi_i^n + \left[ -u \frac{\phi_{i+1}^n - \phi_{i-1}^n}{2 \Delta x} + \frac{\Gamma}{\rho} \frac{\phi_{i+1}^n + \phi_{i-1}^n - 2 \phi_i^n}{(\Delta x)^2} \right] \Delta t \Rightarrow \phi_i^{n+1} = (1 - 2d)\,\phi_i^n + \left(d - \tfrac{c}{2}\right)\phi_{i+1}^n + \left(d + \tfrac{c}{2}\right)\phi_{i-1}^n $$ where we introduced the dimensionless parameters $$ \overbrace{d \;=\; \underbrace{\frac{\Gamma\,\Delta t}{\rho(\Delta x)^2}}_{\text{time required for a disturbance to diffuse over }\Delta x}}^{\substack{\text{ratio of }\Delta t\text{ to}\\\text{characteristic diffusion time}}} \quad \overbrace{c \;=\; \underbrace{\frac{u\,\Delta t}{\Delta x}}_{\text{time required for a disturbance to convect over }\Delta x}}^{\substack{\text{ratio of }\Delta t\text{ to}\\\text{characteristic convection time}}} $$ The ratio (\(c\)) is called the Courant number and is one of the key parameters in computational fluid dynamics. This number is often called the CFL number, where CFL stands for the initials of R. Courant, K. Friedrichs and H. Lewy, who first defined it in their paper from 1928.
1Ferziger, Joel & Perić, Milovan & Street, Robert. (2020). Computational Methods for Fluid Dynamics. 10.1007/978-3-319-99693-6.
2Courant, R., Friedrichs, K., & Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik.Mathematische Annalen, 100, 32–74.