\(
\because \boxed{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{f}}, \quad \mathbf{f} = -\nabla \chi \quad \text{(external force is conservative)}
\)
\(
\therefore \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p - \nabla \chi
\)
\(
\because (\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times (\nabla \times \mathbf{u}), \quad \boldsymbol{\omega} = \nabla \times \mathbf{u}
\)
\(
\therefore (\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} \Rightarrow \frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} = -\frac{1}{\rho} \nabla p - \nabla \chi
\)
\(
\because s = \text{constant} \Rightarrow \nabla s = 0, \quad \frac{1}{\rho} \nabla p = \nabla h \quad \text{(for isentropic flow with uniform entropy)}
\)
\(
\therefore \frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} = -\nabla h - \nabla \chi \Rightarrow \frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \times \boldsymbol{\omega} = -\nabla \left(\frac{|\mathbf{u}|^2}{2} + h + \chi\right)
\)
\(
\because -\mathbf{u} \times \boldsymbol{\omega} = \boldsymbol{\omega} \times \mathbf{u}
\)
\(
\therefore \boxed{
\frac{\partial \mathbf{u}}{\partial t} + (\nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla \left(\frac{|\mathbf{u}|^2}{2} + h + \chi \right)
} \text{where \(h = e + \frac{p}{\rho}\) with \(e\) the internal energy}
\)
1 Tsutomu Kambe. (2007). Elementary Fluid Mechanics. World Scientific, Singapore.