Bernoulli's Equation
One of the basic theorems of flows of an ideal fluid is Bernoulli’s theorem. Suppose that the fluid’s entropy is uniform, the entropy \(s\) per unit mass of fluid is constant everywhere, and assuming the external force is conservative and the external force has a potential \(\chi\) represented by \(\mathbf{f} = -\nabla \chi\). Then, Euler’s equation of motion \(\boxed{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{f}}\) reduces to $$ \frac{\partial \mathbf{u}}{\partial t} + (\nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla \left(\frac{|\mathbf{u}|^2}{2} + h + \chi \right) $$ where \(h\) is the enthalpy \((h = e + p/\rho)\) and \(e\) the internal energy. This is valid for compressible flows.

\( \because \boxed{\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{f}}, \quad \mathbf{f} = -\nabla \chi \quad \text{(external force is conservative)} \)
\( \therefore \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla p - \nabla \chi \)
\( \because (\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times (\nabla \times \mathbf{u}), \quad \boldsymbol{\omega} = \nabla \times \mathbf{u} \)
\( \therefore (\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} \Rightarrow \frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} = -\frac{1}{\rho} \nabla p - \nabla \chi \)
\( \because s = \text{constant} \Rightarrow \nabla s = 0, \quad \frac{1}{\rho} \nabla p = \nabla h \quad \text{(for isentropic flow with uniform entropy)} \)
\( \therefore \frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{|\mathbf{u}|^2}{2}\right) - \mathbf{u} \times \boldsymbol{\omega} = -\nabla h - \nabla \chi \Rightarrow \frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \times \boldsymbol{\omega} = -\nabla \left(\frac{|\mathbf{u}|^2}{2} + h + \chi\right) \)
\( \because -\mathbf{u} \times \boldsymbol{\omega} = \boldsymbol{\omega} \times \mathbf{u} \)
\( \therefore \boxed{ \frac{\partial \mathbf{u}}{\partial t} + (\nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla \left(\frac{|\mathbf{u}|^2}{2} + h + \chi \right) } \text{where \(h = e + \frac{p}{\rho}\) with \(e\) the internal energy} \)


1 Tsutomu Kambe. (2007). Elementary Fluid Mechanics. World Scientific, Singapore.