\[\underbrace{
\frac{\partial}{\partial t} \left( \rho_0 \frac{1}{2} (u^2 + v^2 + w^2) \right)
}_{\text{Kinetic energy change}}
+
\underbrace{
g \rho' w
}_{\text{Potential energy change}}
+
\underbrace{
\nabla \cdot (\mathbf{p'} \mathbf{u})
}_{\text{Work done by pressure forces (energy flux)}}
= 0
\]
\[
\frac{\partial E_p}{\partial t}
= \underbrace{g \rho' w}_{\text{Rate of change of potential energy}} = \frac{\partial}{\partial t}
\left(
\underbrace{ \frac{g^2 \rho'^2}{2 \rho_0 N^2} }_{\text{Depends quadratically on } \rho'}
\right)
\]
\[
\frac{\partial \rho'}{\partial t} = \frac{N^2 \rho_0}{g} \frac{\partial \zeta}{\partial t}
\Rightarrow
E_p = \frac{1}{2} N^2 \rho_0 \zeta^2
\]
For two-layer systems: \(\frac{1}{4} (\rho_2 - \rho_1) g a^2\)
Sharp density jumps: \(N^2 = \frac{g}{\rho_0} (\rho_2 - \rho_1) \delta(z)\), \(\delta(z)\) is the Dirac delta function, it is valid in the integral sense
Assume periodic form
\[
[u, w, p', \rho'] = [\hat{u}, \hat{w}, \hat{p}, \hat{\rho}] e^{i(kx+ly+mz-\omega t)}
\]
\[\Downarrow\]
\[
p' = -\frac{\omega \rho_0}{k^2} m \hat{w} e^{i(kx+ly+mz-\omega t)}
\quad , \quad
\rho' = i \frac{N^2 \rho_0}{\omega g} \hat{w} e^{i(kx+ly+mz-\omega t)}
\quad , \quad
u = -\frac{m}{k} \hat{w} e^{i(kx+ly+mz-\omega t)}
\]
Kinetic energy:
\(
E_k = \frac{1}{4} \rho_0 \left( \frac{m^2}{k^2} + 1 \right) \hat{w}^2
\)
Potential energy:
\(
E_p = \frac{N^2 \rho_0}{4 \omega^2} \hat{w}^2
\)
Using dispersion relation:
\(
\omega^2 = \frac{k^2 N^2}{k^2 + m^2}
\Rightarrow
E_k = E_p
\)
\(\therefore\) the total wave energy
\(
E = E_k + E_p = \frac{1}{2} \rho_0 \left( \frac{m^2}{k^2} + 1 \right) \hat{w}^2
\)
\[
\mathbf{F} = -\frac{\rho_0 \omega m \hat{w}^2}{2k^2} \left( \mathbf{e}_x \frac{m}{k} - \mathbf{e}_z \right)
\Rightarrow
\mathbf{F} = \mathbf{c}_g E
\]
This shows that energy travels with group velocity
◀
▶