The Boussinesq set then simplifies to the equations below, \( \rho_0 \) is a constant reference density \[ \underbrace{ \frac{D\rho}{Dt} = 0 }_{\text{constancy of fluid particle density}} \tag{I} \] \[ \underbrace{ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 }_{\text{incompressibility}} \tag{II} \] \[ \frac{\partial u}{\partial t} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial x} \tag{III} \] \[ \frac{\partial v}{\partial t} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial y} \tag{IV} \] \[ \frac{\partial w}{\partial t} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} - \frac{\rho g}{\rho_0} \tag{V} \]