Integrate over the moving control volume \( V^*(t+\Delta t) \): \( \int_{V^*(t+\Delta t)} F(\mathbf{x},t+\Delta t) dV \)
Using Taylor expansion: \( \int_{V^*(t+\Delta t)} \left( F(\mathbf{x},t) + \frac{F'(\mathbf{x},t)}{1!} \Delta t \right) dV \)
Distribute the integral: \( \int_{V^*(t+\Delta t)} F(\mathbf{x},t) dV + \int_{V^*(t+\Delta t)} \frac{F'(\mathbf{x},t)}{1!} \Delta t dV \)
Since \( V^*(t+\Delta t) \) can be rewritten as \( V^*(t) + \Delta V \), we split the integral into the original volume \( V^*(t) \) and the new volume increment \( \Delta V \):
\( \left( \int_{V^*(t)} F(\mathbf{x},t) dV + \int_{\Delta V} F(\mathbf{x},t) dV \right) + \left( \int_{V^*(t)} \frac{F'(\mathbf{x},t)}{1!} \Delta t dV + \int_{\Delta V} \frac{F'(\mathbf{x},t)}{1!} \Delta t dV \right) \)
Expanding the first term inside the \(\{\}\)-braces into four terms: