A geometrical generalization of Leibniz’s rule is presented using control volumes.
\[
\frac{d}{dt} \int_{V^*(t)} F(x,t) dV = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left\{ \int_{V^*(t+\Delta t)} F(x,t+\Delta t) dV - \int_{V^*(t)} F(x,t) dV \right\}
\]